Math 221 CD1: Worksheet 23
November 15, 2017

1. Use \(\int_{0}^{\pi/2} \sin(x) \, dx \) to compute \(\int_{0}^{1} \arcsin(x) \, dx \).
 (Hint: interpret these integrals as areas and be sure to sketch pictures.)

2. Suppose that \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\). Find \(\int_{a}^{b} 2f(x)f'(x) \, dx \).

3. Sketch the region enclosed by the given curves and find its area twice, once using an integral with respect to \(x \) and once using an integral with respect to \(y \).
 (a) \(y = 3, \ x = 0, \) and \(y = x^3 \)
 (b) \(y = x + 5, \ y = x^2 - 1 \)

4. Sketch the region enclosed by the curves \(y = \sin x \) and \(y = \cos x \) on \(\pi/4 \leq x \leq 5\pi/4 \) and find its area.

5. Sketch the region enclosed by the curves \(y = x^2 \) and \(y = 4x - x^2 \) and find its area.

6. Sketch the region enclosed by the curves \(y = \sinh x, \ y = e^{-x}, \ x = 0, \) and \(x = 2, \) and find its area.

7. Find the number \(b \) such that the line \(y = b \) divides the region bounded by the curves \(y = x^2 \) and \(y = 4 \) into two regions with equal areas.