1. Find the indefinite integrals.
 (a) \(\int \tan^4(x) \sec^4(x) \, dx \)
 (b) \(\int \tan^3(x) \sec^3(x) \, dx \)

2. Find \(\int \sec \theta \, d\theta \). (Hint: multiply the integrand by \(\frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta} \).)

3. Compute the definite integrals.
 (a) \(\int_0^{\pi/2} \cos(u) \sin(\sin(u)) \, du \)
 (b) \(\int_{\ln 3}^{\ln 8} 4te^{t^2} \sqrt{e^{t^2} + 7} \, dt \)
 (c) \(\int_{-\pi/2}^{\pi/2} e^{x^2+3x^4+7} \cos(x) \sin(\sin(\sin(x)))) \, dx \)
 (d) \(\int_0^1 \frac{e^z + 1}{e^z + z} \, dz \)

4. (a) Find the indefinite integrals.
 i. \(\int \cos^2 \theta \sin^3 \theta \, d\theta \)
 ii. \(\int \cos^3 \theta \sin^2 \theta \, d\theta \)
 iii. \(\int \cos^2 \theta \sin^2 \theta \, d\theta \)
 (b) Come up with a strategy for finding \(\int \cos^m(\theta) \sin^n(\theta) \, d\theta \) for any arbitrary pair of natural numbers \(m \) and \(n \).

5. The rate of growth of a fish population was modelled by the equation
 \[
 G(t) = \frac{60000e^{-0.6t}}{(1 + 5e^{-0.6t})^2},
 \]
 where \(t \) is measured in years and \(G \) in kilograms per year. If the biomass was 25000 kilograms in the year 2000, what is the predicted biomass for the year 2020?

6. Suppose that \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\). Find \(\int_a^b 2f(x)f'(x) \, dx \).