Name:

Be sure to show all work and state all tests that you use to receive full credit.

1. Determine the convergence of the series \(\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^{7/2} + n + 2} \).

 Solution 1: We use the comparison test. Note that \(\frac{n^2 - 1}{n^{7/2} + n + 2} \leq \frac{n^2}{n^{7/2} + n + 2} \leq \frac{n^2}{n^{7/2}} = \frac{1}{n^{3/2}} \).

 We know that \(\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \) converges by the \(p \)-test, so thus the series \(\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^{7/2} + n + 2} \) also converges.

 Solution 2: We use the limit comparison test. We will compare the series to \(\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \), which we know converges by the \(p \)-test.

 \[
 \lim_{n \to \infty} \frac{n^2 - 1}{n^{7/2} + n + 2} = \lim_{n \to \infty} \frac{n^{7/2} - n^{3/2}}{n^{7/2}} = 0
 \]

 It is easy to show that the limit is 1, so the series converges by the limit comparison test.

2. Use the ratio test to determine the convergence of the series \(\sum_{n=1}^{\infty} \frac{2^n}{n!} \). **Solution:** To use the ratio test we take the following limit.

 \[
 \lim_{n \to \infty} \left| \frac{\frac{2^{n+1}}{(n+1)!}}{\frac{2^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{2}{n + 1} \right| = 0
 \]

 Since the limit is less than 1, the series converges by the ratio test.
3. Determine if the series \(\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n} \) is divergent, absolutely convergent, or conditionally convergent.

Solution: If we check the \(n \)th term test, the terms limit to \(\ln 1 = 0 \), so the test is inconclusive. We then check for absolute convergence. When we examine the series \(\sum_{n=1}^{\infty} \frac{\ln n}{x} \) and compare it to \(\sum_{n=1}^{\infty} \frac{1}{n} \), the comparison test shows us that the series diverges. Thus the series is not absolutely convergent. It remains to check for conditional convergence. We already know that \(\lim_{n \to \infty} \frac{\ln n}{n} = 0 \), and as the terms are decreasing, the alternating series test shows that the series is convergent. Thus the series is conditionally convergent.