2.1 Probability and measure

Definition 2.1. A measure μ on (E, \mathcal{E}) is a function $\mu : \mathcal{E} \rightarrow [0, \infty]$ such that if $(A_n, n \in \mathbb{N})$'s are disjoint then $\mu(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$. Then (E, \mathcal{E}, μ) is called a measure space. If $\mu(E) = 1$, then μ is called a probability measure and (E, \mathcal{E}, μ) is called a probability space.

Example 2.2. Let E be finite, say $E = \{1, 2, \ldots, n\}$, and $\mathcal{E} = 2^E, \mu(A) := |A|, P(A) = |A|/n$ for $A \in \mathcal{E}$. μ is a measure on (E, \mathcal{E}) called the counting measure and P is a probability measure on (E, \mathcal{E}) called the uniform probability measure.

A probability space (E, \mathcal{E}, P) has outcomes $\omega \in E$ and events $A \in \mathcal{E}$.

Theorem 2.3 (Properties of probability). From the definition of probability measure it follows that:

a. $P(\emptyset) = 0$

b. $P(A^c) = 1 - P(A)$

c. $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

2.2 Random variables

Definition 2.4. Given a probability space (Ω, \mathcal{F}, P) and a measurable space (E, \mathcal{E}), an (E, \mathcal{F})-measurable random variable (rv) is a measurable function $X : \Omega \rightarrow E$, i.e., $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{E}$.

Special case: If E is countable, then $X : \Omega \rightarrow E$ is a $(2^E, \mathcal{F})$-measurable rv iff $X^{-1}(i) \in \mathcal{F}$ for all $i \in E$. The probability mass function (pmf) or distribution of X is defined by

$$\lambda(i) := P(X = i) = P(\{\omega \in \Omega \mid X(\omega) = i\}).$$

Example 2.5. Flip 2 fair coins. $\Omega = \{HH, HT, TH, TT\}$. Define $E = \{0, 1, 2\}$ and $X :=$ number of heads in the 2 coin flips. Then X is a $(2^E, 2^\Omega)$-measurable rv and

$$\lambda(0) = P(\{TT\}) = 1/4, \lambda(1) = P(\{HT, TH\}) = 1/2, \lambda(2) = P(\{HH\}) = 1/4.$$

Given a collection of $(\mathcal{E}, \mathcal{F})$-measurable random variable $X_i, i \in I$, we define $\sigma(X_i, i \in I)$ as the smallest σ-algebra w.r.t. which all $X_i, i \in I$'s are measurable, i.e.,

$$\sigma(X_i, i \in I) = \sigma(X_i^{-1}(A), i \in I, A \in \mathcal{E}).$$

In Example 2.5, $\sigma(X) = \sigma(\{TT\}, \{HH\}, \{HT, TH\})$.
2.3 Conditional probability

Definition 2.6. If A, B are events with $P(B) > 0$, the conditional probability of A given B is defined as

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)}.$$

Note that $P(B \mid B) = 1$.

Theorem 2.7 (Law of total probability). If $B_n, n \in I$ is a partition of E then for $A \in \mathcal{E}$ we have

$$P(A) = \sum_{i \in I} P(A \mid B_n) P(B_n).$$

Definition 2.8. Two events A, B are independent iff $P(A \cap B) = P(A) P(B)$, equivalently $P(A \mid B) = P(A)$ when $P(B) > 0$.

Let (E, \mathcal{E}, P) be a probability space. Assume that E is countable. Thus there exists a partition $\Pi = \{E_i, i \in I\}$ generating \mathcal{E}.

Definition 2.9. Given a σ-algebra $\mathcal{B} \subseteq \mathcal{E}$ and an event $A \in \mathcal{E}$, the conditional probability of A given \mathcal{B} is a rv that is constant on each E_i and

$$P(A \mid \mathcal{B})(\omega) := P(A \mid E_i) \text{ for all } \omega \in E_i.$$

Example 2.10. Toss 2 fair coins. Thus $E = \{HH, HT, TH, TT\}$ with $\mathcal{E} = 2^E, P(A) = \frac{|A|}{4}$. Let $\mathcal{B} = \{\emptyset, \{HH, HT\}, \{TH, TT\}, \Omega\}$. The partition $E_1 = \{HH, HT\}, E_2 = \{TH, TT\}$ generates \mathcal{B}.

Then

$$P(A \mid \mathcal{B}) = \begin{cases} P(A \mid \{HH, HT\}) & \text{if } \omega \in E_1, \text{ i.e., first coin toss is } H \\ P(A \mid \{TH, TT\}) & \text{if } \omega \in E_2, \text{ i.e., first coin toss is } T. \end{cases}$$

If $A = \{HH\}$, then $P(A \mid \mathcal{B}) = 1/2$ if first coin toss is H and 0 otherwise. Note that, by law of total probability we have

$$P(A) = P(A \mid E_1) P(E_1) + P(A \mid E_2) P(E_2) = 1/2 \cdot 1/2 = 1/4.$$