26.1 Recap

Discrete Time Branching Process with $Z_0 = 1$: each individual will reproduce offspring $X \sim F$,

i. **Subcritical**: $E X < 1$, Extinction probability = 1;

ii. **Critical**: $E X = 0$, Extinction probability = 1;

iii. **Supercritical**: $E X > 1$, Extinction probability < 1;

Markovian Branching Process (Continuous Time) with death rate μ and birth rate λ,

i. **Subcritical**: $\lambda < \mu$, Extinction probability = 1;

ii. **Critical**: $\lambda = \mu$, Extinction probability = 1;

iii. **Supercritical**: $\lambda > \mu$, Extinction probability = μ/λ < 1;

26.2 Epidemic/Information Spreading/Flow of Liquid

Let $G = (V, E)$ denote the graph of individuals in a population. Let I be the set of all the connected subgraphs of G. It is assumed that all neighboring pairs of individuals contact randomly and independently at a typical rate. The infection-spreading mechanism works so that individuals become infected when they contact an infected person. An infected person remains infected for a specific time and either recovers or dies. The infection-spreading and recovery mechanisms can be quantitatively explained using random variables to describe these mechanisms.

Infection Spreading and Recovery Mechanism. For the infection spreading mechanism, it can be assumed that each infected individual has an i.i.d. poisson clock with a rate parameter λ, and the infection is passed to a random neighbor when the Poisson clock ticks. The recovery mechanism can be modeled by its own Poisson clock with a rate parameter μ, and the individual either recovers or dies when the clock ticks.

26.2.1 SIR (Susceptible/Infected/Recovered) Model

Suppose that there are N individuals in a population. Let S_0 denote the number of susceptible individuals and I_0 denote the number of infected individuals at Time $t = 0$. At Time 0, each individual is susceptible or infected, $S_0 + I_0 = N$. If the state at a point of Time is (s, i), then the model assumes that the number of susceptible and infected $X_t = (S_t, I_t)$ follows a CTMC. The state space for the model can be written as $I = \{(s, N - s) \mid 0 \leq s \leq N\}$. It is evident that the state $(N, 0)$ is absorbing, and all the other states are transient. For any state $X_t = (S_t, I_t) = (s, i)$,
the next state is either \(X_{t+1} = (s - 1, i + 1) \), a susceptible gets infected or \(X_{t+1} = (s, i - 1) \), an infected gets recovered. The transition rates are
\[
q_{(s,i),(s-1,i+1)} = \frac{\lambda \cdot i \cdot s}{N - 1}, \quad q_{(s,i),(s,i-1)} = \mu \cdot i, \quad i \geq 0.
\] (26.1)

26.2.2 Example: Rumor Spreading (SIR: \(\lambda = 1, \mu = 0, I_0 = 1, S_0 = N - 1 \))

The chain is \((N - 1, 1) \to (N - 2, 2) \to \cdots \to (0, N)\). Denote \(T \) as the Time for the rumor to spread to everyone. Then,
\[
T = t_1 + t_2 + t_3 + \cdots + t_{N-1},
\]
where \(t_i \) are independent of each other and \(t_i \sim \text{Exp} \left(\frac{i(N-i)}{N-1} \right) \). We have
\[
\mathbb{E} T = \sum_{i=1}^{N-1} \mathbb{E} t_i = \sum_{i=1}^{N-1} \frac{N - 1}{i(N - i)} = N - 1 - \sum_{i=1}^{N-1} \left(\frac{1}{N - k} + \frac{1}{k} \right) = 2 \cdot \frac{N - 1}{N} \cdot \sum_{i=1}^{N-1} \frac{1}{k} \approx 2 \log N.
\]

Theorem 26.1. We have, \(\frac{\mathbb{E} T}{2 \log N} \to 1 \) and \(\frac{T}{2 \log N} \to 1 \) in probability as \(N \to \infty \).

Theorem 26.2. Consider the Complete Graph on \(N \) vertices. Assume that rumor starts from vertex \(i \). Define \(T_j := \text{Time when the rumor arrives at vertex } j \). Then
\[
\frac{T_j}{\log N} \to 1 \text{ a.s. as } N \to \infty
\]

Idea: Given \(I_0 = 1 \) starting with vertex \(i \) at time 0, we have \(T_1 := \inf \{ t \mid |I_t| \geq \sqrt{N} \} \sim \sum_{k=1}^{\sqrt{N}} \text{Exponential} \left(\frac{k(N-k)}{N-1} \right) \) with \(\mathbb{E} T_1 = \frac{N-1}{N} \cdot \sum_{k=1}^{\sqrt{N}} \left(\frac{1}{N-k} + \frac{1}{k} \right) \approx \frac{1}{2} \log N. \) Same also holds around vertex \(j \).

26.3 Queuing Model (M/M/s)

Queues form in many circumstances, and predicting their behavior is essential for the system’s efficiency. The basic mathematical model for queues assumes that a number of customers are

\[\sqrt{\frac{N}{N-1}} = 1 \]

\[\frac{1}{2} \log(N) \]
waiting for service, and each customer has to wait for some time before he/she gets served. The
arrival times and waiting times are independently distributed variables.

\(M \): Memoryless inter-arrival times \(\sim \) Exponential\((\lambda)\)

\(M \): Memoryless service times \(\sim \) Exponential\((\mu)\)

\(s \): Number of servers, \(1 \leq s \leq \infty \).

26.3.1 M/M/1

M/M/1 queue is the simplest queuing network model. M/M/1 means memoryless inter-arrival times/memoryless service times/one server. Suppose that the inter-arrival times are exponentially distributed with parameter \(\lambda \) and the service times are exponential of parameter \(\mu \). Then the number of customers in the queue \((X_t)_{t \geq 0}\) evolves as a Markov chain, and the state transition diagram is given below. Here the State space \(I \) is \(\{0, 1, 2, \ldots \} \).

The \(Q \) matrix is

\[
Q = \begin{bmatrix}
-\lambda & \lambda & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots \\
\mu & -(\lambda + \mu) & \lambda & 0 & \ldots & 0 & 0 & 0 & \ldots \\
0 & \mu & -(\lambda + \mu) & \lambda & \ldots & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & \ldots & \mu & -(\lambda + \mu) & \lambda & \ldots \\
\vdots & \ddots
\end{bmatrix}
\]

The jump chain corresponding to the \(Q \) matrix is a random walk with probability

\[
\Pi_{0,1} = 1, \quad \Pi_{i,i+1} = \frac{\lambda}{\lambda + \mu}, \quad \Pi_{i,i-1} = \frac{\mu}{\lambda + \mu} \quad \text{for } i \in I,
\]

with

\[
\Pi = \begin{bmatrix}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots \\
\frac{\mu}{\lambda + \mu} & 0 & \frac{\lambda}{\lambda + \mu} & 0 & \ldots & 0 & 0 & 0 & \ldots \\
0 & \frac{\mu}{\lambda + \mu} & 0 & \frac{\lambda}{\lambda + \mu} & \ldots & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & \ldots & \frac{\mu}{\lambda + \mu} & 0 & \frac{\lambda}{\lambda + \mu} & \ldots \\
\vdots & \ddots
\end{bmatrix}
\]

When \(\lambda > \mu \), \(X_t \) is transient and \(X_t \to \infty \). When \(\lambda < \mu \), \(X_t \) is positive recurrent. Under condition \(\lambda < \mu \), the equilibrium distribution is

\[
\pi_i = \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^i, \quad i > 0.
\]
The average number of customers in the queue in equilibrium is given by

$$E_\pi(X_t) = \sum_{i=1}^{\infty} P_\pi(X_t \geq i) = \frac{\lambda}{\mu - \lambda}.$$

26.3.2 M/M/s

This queueing model is similar to M/M/1 queue, but instead of 1 server, there are s servers, and the service rate by each server is μ. Thus, the first service time is exponential of parameter μ, and the maximum service rate occurs when all the servers are working and is $s\mu$. Therefore, the queue size is a Markov chain $(X_t)_{t \geq 0}$ with the state transition diagram below. We have the rate matrix

$$Q = \begin{bmatrix}
-\lambda & \lambda & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots \\
\mu & -(\lambda + \mu) & \lambda & 0 & \ldots & 0 & 0 & 0 & \ldots \\
0 & 2\mu & -(\lambda + 2\mu) & \lambda & \ldots & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & \ldots & s\mu & -(\lambda + s\mu) & \lambda & \ldots \\
\vdots & \ddots \\
\end{bmatrix}.$$

The jump chain corresponding to Q matrix is a random walk with probability

$$\Pi_{01} = 1, \Pi_{i(i+1)} = \frac{\lambda}{\lambda + i\mu}, \Pi_{i(i-1)} = \frac{i\mu}{\lambda + i\mu} \text{ for } i \in I,$$

and

$$\Pi = \begin{bmatrix}
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & \ldots \\
\frac{\mu}{\lambda + \mu} & 0 & \frac{\lambda}{\lambda + \mu} & 0 & \ldots & 0 & 0 & 0 & \ldots \\
0 & \frac{2\mu}{\lambda + 2\mu} & 0 & \frac{\lambda}{\lambda + 2\mu} & \ldots & 0 & 0 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
0 & 0 & 0 & 0 & \ldots & \frac{s\mu}{\lambda + s\mu} & 0 & \frac{\lambda}{\lambda + s\mu} & \ldots \\
\vdots & \ddots \\
\end{bmatrix}.$$

The chain is transient when $\lambda \geq s\mu$ and is recurrent otherwise. Application of M/M/s model includes but is not limited to,

i. Genetic Divergence: Wright-Fisher model and Moran model,

ii. Insurance Claims: Bankruptcy model.