23.1 Time Reversal

Theorem 23.1. Let Q be an irreducible non-explosive rate matrix with invariant distribution λ. Fix $T \in (0, \infty)$. Define, $\tilde{X}_t = X_{T-t}$, $0 \leq t \leq T$. Then,

$$(\tilde{X}_t)_{0 \leq t \leq T} \sim \text{Markov}(\lambda, \tilde{Q})$$

where $\lambda_i \tilde{q}_{ij} = \lambda_j q_{ji}$ for all i, j. Moreover, $\tilde{Q} = ((\tilde{q}_{ij}))$ is irreducible, non-explosive with invariant distribution λ.

Proof. The transition matrix for $(X_t)_{t \geq 0}$ satisfies the forward equation $P'(t) = P(t)Q, t > 0$. Define $\tilde{q}_{ij} = \lambda_j q_{ji}/\lambda_i$, $\tilde{p}_{ij}(t) = \lambda_j p_{ji}(t)/\lambda_i, i, j \in I, t > 0$ and $\tilde{P}(t) = ((\tilde{p}_{ij}(t)))$.

We claim that

i. \tilde{Q} is a rate matrix, and

ii. $\tilde{P}'(t) = \tilde{Q}\tilde{P}(t)$ for all $t > 0$.

The proof of i. is easy. For ii., fix i, j. We have

$$\tilde{p}_{ij}(t) = \left(\frac{\lambda_j p_{ji}(t)}{\lambda_i}\right)' = \frac{\lambda_j}{\lambda_i} (P(t)Q)_{ij} = \frac{\lambda_j}{\lambda_i} \sum_k p_{jk}(t)q_{ki}$$

$$= \sum_k \frac{\lambda_j}{\lambda_i} p_{jk}(t) \frac{\lambda_k}{\lambda_i} q_{ki} = \sum_k \tilde{p}_{jk}(t) \tilde{q}_{ik} = (\tilde{Q}\tilde{P}(t))_{ij}.$$

Trivially, $\tilde{P}(0) = I$. Thus $\tilde{P}(t), t \geq 0$ satisfies the backwards equations with rate matrix \tilde{Q}.

Exercise 23.1. Check that \tilde{Q} is non-explosive, irreducible with invariant distribution λ.

Now, fix times $0 \leq t_1 < t_2 < \cdots < t_k = T$. We want to show that

$$P(\tilde{X}_{t_i} = x_i, i = 1, 2, \ldots, k) = \lambda_{x_1} \tilde{p}_{x_1 x_2}(t_2 - t_1)\tilde{p}_{x_2 x_3}(t_3 - t_2)\cdots\tilde{p}_{x_{k-1} x_k}(t_k - t_{k-1}).$$

We have the LHS equal to

$$P(X_{T-t_i} = x_i, i = 1, 2, \ldots, k) = P(X_{T-t_k} = x_k, \ldots, X_{T-t_1} = x_1)$$

$$= \lambda_{x_k} p_{x_k x_{k-1}}(t_k - t_{k-1})\cdots p_{x_2 x_1}(t_2 - t_1)$$

$$= \frac{\lambda_{x_k}}{\lambda_{x_{k-1}}} p_{x_k x_{k-1}}(t_k - t_{k-1}) \cdot \frac{\lambda_{x_{k-1}}}{\lambda_{x_{k-2}}} p_{x_{k-1} x_{k-2}}(t_{k-1} - t_{k-2})\cdots \frac{\lambda_{x_2}}{\lambda_{x_1}} p_{x_2 x_1}(t_2 - t_1) \lambda_{x_1}$$

$$= \lambda_{x_1} \tilde{p}_{x_1 x_2}(t_2 - t_1)\cdots\tilde{p}_{x_{k-1} x_k}(t_k - t_{k-1}) = \text{RHS}.$$
This completes the proof.

23.2 Detailed Balance

A distribution \(\lambda \) is in detailed balance with a rate matrix \(Q \) iff

\[
\lambda_i q_{ij} = \lambda_j q_{ji}, \forall i \neq j.
\]

Theorem 23.2. Assume that \(Q \) is irreducible, non-explosive with invariant distribution \(\lambda \). The following are equivalent

i. \(\lambda \) is in detailed balance with \(Q \),

ii. The CTMC is time reversible.

Corollary 23.3. \(\lambda \) is in detailed balance with \(Q \) implies that \(\lambda \) is invariant for \(Q \).

Note that a distribution \(\lambda \) is in detailed balance with \(Q \) implies that \(\lambda \) is invariant for \(Q \), but \(Q \) may be explosive.

Example 23.4. Consider the state space \(I = \mathbb{Z}_+ \) and the birth and death CTMC with \(q_{i,i+1} = p \cdot q_i, q_{i,i-1} = q \cdot q_i, i \geq 0 \) where \(p + q = 1 \). Assume that \(p > q \). The jump chain is

\[
\Pi_{ij} = \begin{cases}
p & \text{if } j = i + 1, \\
q & \text{if } j = i - 1, \\
0 & \text{otherwise.}
\end{cases}
\]

If \(p = q \), then the jump chain is recurrent. If \(p > q \), then the chain goes to \(\infty \). Thus, \((Y_n)_{n \geq 0} \) is transient. Let us find \(\lambda \) such that \(\lambda_i q_{ij} = \lambda_j q_{ji} \) for \(i \neq j \). It is enough to consider \(j = i + 1 \) and solve

\[
\lambda_i q_i \cdot p = \lambda_{i+1} q_{i+1} \cdot q, i \geq 0.
\]

Solving we get,

\[
\lambda_{i+1} q_{i+1} = \lambda_i q_i \cdot \frac{p}{q} = \lambda_0 q_0 \cdot \left(\frac{p}{q} \right)^{i+1}.
\]

Thus,

\[
\lambda_i \propto \frac{1}{q_i} \left(\frac{p}{q} \right)^i \text{ for all } i \geq 0.
\]

If \(q_i = (2p/q)^i \), then \(\lambda_i \propto \frac{1}{q_i} \), \(i \geq 0 \) implies that there exists an invariant measure.

Remark 23.5. Recurrence \(\implies \) Non-explosive; but the reverse is not true. Non-explosive + Invariance \(\implies \) Recurrence.

23.3 Convergence to Equilibrium

Let \(Q \) be irreducible and non-explosive with invariant distribution \(\lambda_i = 1/m_i q_i, i \in I \).
Theorem 23.6. Let \((X_t)_{t \geq 0} \sim \text{Markov}(\nu, Q)\). Then, \(\mathbb{P}(X_t = j) \xrightarrow{t \to \infty} \lambda_j \) for all \(j \in I\).

Equivalently, \(d_{TV}(\nu^t P(t), \nu^\infty) = \frac{1}{2} \sum_{j \in I} |\mathbb{P}(X_t = j) - \lambda_j| \xrightarrow{t \to \infty} 0\). (Exercise!)

Proof. Fix a positive real number \(h > 0\). Define \(Z_n = X_{nh}, n \geq 0\). Thus, \((Z_n)_{n \geq 0} \sim \text{Markov}(\nu, P(h))\).

Now, \(\lambda\) is invariant for \(Q\), i.e., \(\lambda^\top Q = 0\) and \(Q\) is non-explosive, implies that \(\lambda^\top P(h) = \lambda^\top\). Thus, \(P(h)\) is irreducible, aperiodic, positive recurrent with invariant distribution \(\lambda\). In particular, \(\mathbb{P}(Z_n = j) = \mathbb{P}(X_{nh} = j) \xrightarrow{n \to \infty} \lambda_j \forall j \in I\).

Fix \(t > 0\). There exists \(n \in \mathbb{N}\) such that \(nh \leq t < (n + 1)h\). We want to bound

\[
\sup_n \sup_{nh \leq t < (n + 1)h} |\mathbb{P}(X_t = j) - \mathbb{P}(X_{nh} = j)|.
\]

Lemma 23.7. Take \(s \leq t < s + h\). Then \(|\mathbb{P}(X_t = j) - \mathbb{P}(X_s = j)| \leq 1 - e^{-q_i h}\).

Proof of Lemma 23.7. Clearly,

\[
\mathbb{P}(X_t = j) - \mathbb{P}(X_s = j) = \sum_k \mathbb{P}(X_t = j, X_s = k) - \mathbb{P}(X_s = j) \\
= \sum_k \mathbb{P}(X_s = k) \mathbb{P}(X_{t-s} = j) - \mathbb{P}(X_s = j) \\
= -\mathbb{P}(X_s = j)(1 - \mathbb{P}(X_{t-s} = i)) + \sum_{k \neq i} \mathbb{P}(X_{t-s} = k) \mathbb{P}(X_s = j).
\]

Thus, \(|\mathbb{P}(X_t = j) - \mathbb{P}(X_s = j)| \leq 1 - p_{ii}(t - s) \leq 1 - e^{-q_i(t-s)} \leq 1 - e^{-q_i h}.\)

Using the Lemma, we get that

\[
\sup_n \sup_{nh \leq t < (n + 1)h} |\mathbb{P}(X_t = j) - \mathbb{P}(X_{nh} = j)| \leq \sum_i \nu_i(1 - e^{-q_i h}) \xrightarrow{h \to 0} 0.
\]

Thus, \(\mathbb{P}(X_t = j) \to \lambda_j\) as \(t \to \infty\) for all \(j \in I\).

We now state the Ergodic theorem for irreducible, non-explosive, positive recurrent CTMC.

Theorem 23.8. Assume that \(Q\) is irreducible, non-explosive with invariant distribution \(\lambda\) with \(\lambda_j = \frac{1}{m_j q_i}, j \in I\). We have, almost surely,

\[
\frac{1}{t} \int_0^t \mathbb{1}_{X_s = j} ds \xrightarrow{t \to \infty} \lambda_j \text{ for all } j \in I,
\]
and for any bounded function \(f \) on \(I \),
\[
\hat{f}_t = \frac{1}{t} \int_0^t f(X_s) \, ds \xrightarrow{t \to \infty} \sum_{i \in I} f_i \lambda_i.
\]

Remark 23.9. One can prove that \(\sqrt{t} \left(\hat{f}_t - \sum_{i \in I} f_i \lambda_i \right) \xrightarrow{\text{in distribution}} N(0, \sigma^2) \) in distribution under appropriate conditions, as \(t \to \infty \) for some \(\sigma \geq 0 \).