11.1 Invariant distributions

We first prove the theorem from the last lecture.

Theorem 11.1. Let P be irreducible and let λ be an invariant measure for P with $\lambda_k = 1$. Then $\lambda \geq \gamma^{(k)}$. If in addition P is recurrent, then $\lambda = \gamma^{(k)}$.

Proof. For any $j \in I$ we have

$$\lambda_j = \sum_{i_1 \in I} \lambda_{i_1} p_{i_1 j} = \sum_{i_1 \neq k} \lambda_{i_1} p_{i_1 j} + p_k j = \sum_{i_1, i_2 \neq k} \lambda_{i_2} p_{i_2 i_1} p_{i_1 j} + p_{k_1} p_{i_1 j} + \sum_{i_1 \neq k} p_{k_1} p_{i_1 j}$$

$$\vdots$$

$$= \sum_{i_1, \ldots, i_n \neq k} \lambda_{i_n} p_{i_n i_{n-1}} \cdots p_{i_1 j} + \left(p_{k_j} + \sum_{i_1 \neq k} p_{k_1} p_{i_1 j} + \cdots + \sum_{i_1, \ldots, i_{n-1} \neq k} p_{k_{n-1}} \cdots p_{i_2 i_1} p_{i_1 j} \right)$$

Dropping the non-negative term $\sum_{i_1, \ldots, i_n \neq k} \lambda_{i_n} p_{i_n i_{n-1}} \cdots p_{i_1 j}$, we obtain

$$\lambda_j \geq P_k(X_1 = j, R_k \geq 1) + P_k(X_2 = j, R_k \geq 2) + \cdots + P_k(X_n = j, R_k \geq n) \to \gamma^{(k)}_j$$

as $n \to \infty$ where R_k is the first return time to k. So, we have $\lambda \geq \gamma^{(k)}$.

If in addition P is recurrent, then we proved earlier that $\gamma^{(k)}$ is invariant, so $\mu = \lambda - \gamma^{(k)}$ is also invariant with $\mu \geq 0$ and $\mu_k = \lambda_k - \gamma^{(k)} = 0$. Since P is irreducible, for any $i \in I$, there is some n such that $p_{i_k}^{(n)} > 0$.

Now, we have

$$0 = \mu_k = \sum_{j \in I} \mu_j p_{j_k}^{(n)} \geq \mu_i p_{i_k}^{(n)},$$

so $\mu_i = 0$, and $\lambda = \gamma^{(k)}$.

Recall that, $i \in I$ is recurrent $\iff P_i(X_n = i \text{ infinity often}) = 1 \iff P_i(R_i < \infty) = 1$. Let m_i be the expected first return time

$$m_i = E_i(R_i).$$
Definition 11.2 (Positive recurrent). A state \(i\) is positive recurrent if \(m_i < \infty\), otherwise it is null recurrent.

Theorem 11.3. Let \(P\) be irreducible, then the following are equivalent:

i. every state is positive recurrent;

ii. some state is positive recurrent;

iii. \(P\) has an invariant distribution \(\pi\).

Moreover, when iii. holds, \(m_k = 1/\pi_k\) for all \(k \in I\).

Proof. (i) \(\implies\) (ii). This is trivial.

(ii) \(\implies\) (iii) If \(i\) is positive recurrent, then \(P\) is recurrent, \(\gamma(i)\) is invariant. We have

\[
\sum_{j \in I} \gamma_{ij} = m_i < \infty
\]

So \(\gamma(i)/m_i\) is an invariant distribution.

(iii) \(\implies\) (i) Take arbitrary \(k \in I\). Since \(P\) is irreducible and \(\sum_{i \in I} \pi_i = 1\), we have \(\pi_k = \sum_{i \in I} \pi_i P_{ik}^{(n)} > 0\) for some \(n\). Set \(\lambda_i = \pi_i/\pi_k\). Then \(\lambda\) is invariant and \(\lambda_k = 1\). By Theorem 11.1, \(\lambda \geq \gamma(k)\), so

\[
m_k = \sum_{i \in I} \gamma_{ik} \leq \sum_{i \in I} \frac{\pi_i}{\pi_k} = \frac{1}{\pi_k} < \infty
\]

and \(k\) is positive recurrent.

Finally, suppose that (iii) holds, then \(P\) is positive recurrent, then by theorem 11.1 the inequality \(\lambda \geq \gamma(k)\) is an equality. So \(m_k = 1/\pi_k\) for all \(k \in I\).

Example 11.4 (Simple symmetric random walk on \(Z\)). In the simple symmetric random walk problem, the state space is \(Z\), the probabilities of transitioning from state \(i\) to \(i + 1\) or \(i - 1\) are both 1/2. We know that \(P\) is recurrent. Consider

\[
\pi_i = 1 \text{ for all } i.
\]

Clearly, \(\pi\) is invariant. Then we can use Theorem 11.1 to see any invariant measure is a multiple of \(\pi\). So there is no invariant distribution.

Example 11.5 (Simple symmetric random walk on \(Z^3\)). Similarly, consider \(\pi_i = 1\) for all \(i\). Clearly \(\pi\) is an invariant measure. But we know that simple symmetric random walk on \(Z^3\) is transient. So the existence of invariant measure does not imply recurrence.

Example 11.6 (Asymmetric random walk on \(Z\)). Consider the asymmetric random walk on \(Z\) with \(p_{i,i-1} = q < p = p_{i,i+1}\). An invariant measure \(\pi\) needs to satisfy \(\pi^T = \pi^T P\), that is, for any \(i \in Z\),

\[
\pi_i = \pi_{i-1} p + \pi_{i+1} q
\]

We can check the solution is

\[
\pi_i = A + B \cdot (p/q)^i, \quad i \in Z.
\]
Example 11.7. Consider a Markov Chain on \mathbb{Z}^+ so that for all $i \geq 0$,

$$
\begin{align*}
p_{i,i+1} &= p_i \\
p_{i,0} &= q_i = 1 - p_i, \ i \in \mathbb{Z}^+.
\end{align*}
$$

The equation $\pi^\top = \pi^\top P$ gives

$$
\pi_0 = \sum_{i=0}^\infty q_i \pi_i
$$

$$
\pi_i = p_{i-1} \pi_{i-1}, \ \text{for all } i \geq 1
$$

Combining the equations, we can see,

$$
\pi_0 = \sum_{i=0}^\infty (1 - p_i) p_{i-1} \cdots p_0 \cdot \pi_0.
$$

Suppose we choose p_i sufficiently quickly converging to 1 so that

$$
p = \prod_{i=0}^\infty p_i > 0.
$$

We notice

$$
\sum_{i=0}^\infty (1 - p_i) p_{i-1} \cdots p_0 = (1 - p_0) + (1 - p_1) p_0 + (1 - p_2) p_1 p_0 + \cdots.
$$

is a telescoping series, and

$$
\sum_{i=0}^\infty (1 - p_i) p_{i-1} \cdots p_0 = 1 - \prod_{i=0}^\infty p_i = 1 - p < 1.
$$

Hence,

$$
\pi_0 = (1 - p) \pi_0
$$

implies that $\pi_0 = 0$, and $\pi_i = 0$ for all i. So the only invariant measure is the trivial zero invariant measure.

11.2 Aperiodicity

Consider $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. we can see $P^2 = I, P^3 = P$ and more generally, $P^{2n} = I, P^{2n+1} = P$ for all integer $n \geq 0$. Clearly $p_{ij}^{(n)}$ does not converge for all i, j. In this case, the states are not aperiodic.

Definition 11.8 (Aperiodic state). State i is aperiodic if $p_{ii}^{(n)} > 0$ for all sufficiently large n.

Exercise 11.1. State i is aperiodic if and only if $\gcd \left\{ n : p_{ii}^{(n)} > 0 \right\} = 1$.
Lemma 11.9. Suppose P is irreducible with aperiodic state i. Then for all states j and k, $p_{jk}^{(n)} > 0$ for all sufficiently large n. In particular, all states are aperiodic.

Proof. P is irreducible implies that for some $r, s \geq 0$, $p_{ji}^{(r)} > 0$ and $p_{ik}^{(s)} > 0$. Then,

$$p_{jk}^{(r+n+s)} \geq p_{ji}^{(r)} p_{ii}^{(n)} p_{ik}^{(s)} > 0$$

for all sufficiently large n. ■

Theorem 11.10. Suppose P is irreducible and aperiodic with invariant distribution π. Let λ be any distribution. Suppose $(X_n)_{n \geq 0} \sim \text{Markov}(\lambda, P)$, then

$$P(X_n = j) \rightarrow \pi_j \text{ as } n \rightarrow \infty$$

for all j. In particular, $p_{ij}^{(n)} \rightarrow \pi_j$ as $n \rightarrow \infty$ for all j.

Proof. Next lecture. ■