4.1 Stochastic Matrices

Definition 4.1. Let I be a countable set.

(a) A square matrix $P = ((p_{ij}))_{i,j \in I}$ is called a **stochastic matrix** if

\[p_{ij} \geq 0 \text{ for all } i, j \in I \text{ and } \sum_{j \in I} p_{ij} = 1 \text{ for all } i \in I. \]

(b) A square matrix P is called a **sub-stochastic matrix** if it satisfies (a) and (iii).

\[\sum_{j=1}^{n} p_{ij} \leq 1 \text{ for all } i \in I. \]

(c) A square matrix P is called a **doubly-stochastic matrix** if P and P^T are both stochastic matrices.

The way to think of the entry p_{ij} is, roughly, “the probability of going to state j next, given that we are at state i now”. We will make this more precise, but for now think of these probabilities as “transition probabilities”. As such, a stochastic matrix is also commonly called a transition/Markov matrix, or a generator.

Definition 4.2. A directed graph $G = (V, E)$ is a set of vertices V and collection of directed edges $(i, j) \in E \subset V \times V$ from vertex i to vertex j. A weighed graph (V, E, W) is a graph (V, E) with the weight of an edge $e = (i, j)$ given by $w_e = w_{ij}$. We will assume that $w_{ij} = 0$ iff (i, j) is not an edge in the graph.

Given a Stochastic matrix $P = ((p_{ij}))_{i,j \in I}$ we can define a weighed directed graph with vertex set I and edge weight of (i, j) given by p_{ij}. Note that, $\sum_{j \in I} p_{ij} = 1$ for all i implies that the total weight of all the out-edges from the vertex i is 1.

Example 4.3. Given a stochastic matrix $P = \begin{bmatrix} 1 & 0 & 0 \\ 1/2 & 1/4 & 1/4 \\ 1/3 & 1/3 & 1/3 \end{bmatrix}$ then the corresponding edge-
A path in a directed graph $G = (V, E)$ is a collection of edges $(i_0, i_1), (i_1, i_2), \ldots, (i_{n-1}, i_n)$ where $i_0, i_1, \ldots, i_n \in V$. Moreover, the length of a path is the number of edges in this path, and the weight of a path is defined as $\prod_{\text{edges in the path}}$ edge weights.

A cycle is a path with the same starting and ending vertices.

Example 4.5. (a) $\{(2,3), (3,2), (2,3), (3,2)\}$ is a path of G with length (i.e., number of edges) 4.
(b) $\{(2,1), (1,1), (1,1)\}$ is a path of G with length 3 and weight $= 1/2 \cdot 1 \cdot 1 = 1/2$.
(c) For example 4.3, to reach 1 from 2 in 2 steps, there are 3 paths:

$\{(2,1), (1,1)\}$
$\{(2,2), (2,1)\}$
$\{(2,3), (3,1)\}$

The total weight of these paths is

$$(P \cdot P)_{21} = \sum_{k=1}^{n} p_{2k} p_{k1} = p_{21} p_{11} + p_{22} p_{21} + p_{23} p_{31}.$$

Exercise 4.1. Show that $(P^k)_{ij} = \text{Total weight of all paths from } i \text{ to } j \text{ of length } k$.

Remark 4.6. P is a stochastic matrix if and only if $P \cdot 1 = 1$ where $1 = (1,1,\ldots,1)^T$. Thus, if P is stochastic, so are P^k for all positive integer k.

Theorem 4.7. For a stochastic matrix P, the following statements hold:

i. $\text{spec}(P) \subseteq B(0,1)$,

ii. If $p_{ii} > 0$ for all i, then $\text{spec}(P) \subseteq B(0,1) \cup \{1\}$.

Proof. i. For all i, $R_i = \sum_{j \neq i} |p_{ij}| = 1 - p_{ii}$. Suppose z is an eigenvalue of P. Then by Gershgorin circle theorem, $z \in B(p_{ii}, 1 - p_{ii})$ and thus, $|z| \leq 1$.

Follows from the fact that $B(p_{ii}, 1 - p_{ii}) \subseteq B(0,1) \cup \{1\}$ if $p_{ii} > 0$. ■
4.2 Discrete Time Markov Chains

Definition 4.8. Given a probability space (Ω, \mathcal{F}, P), a set I, and an ordered set \mathcal{T}, a stochastic process (with values in I) is a collection of random variables $(X_t)_{t \in \mathcal{T}}$ such that $X_t : \Omega \to I$ is a random variable for each $t \in \mathcal{T}$. We call I the state space of the stochastic process and \mathcal{T} the time domain. Moreover, if \mathcal{T} is countable (e.g., $\mathbb{N} = \{0, 1, 2, \ldots\}$), then we get a discrete-time stochastic process.

A stochastic process is a function of two variables, and could be written $X(\omega, t)$. But it is more commonly written as $X_t(\omega)$, since we think of these two variables differently. For each fixed $t \in \mathcal{T}$, X_t is a random variable, and once we choose a specific outcome in Ω, we have the number $X_t(\omega)$.

In this sense, a stochastic process is a sequence of random variables, indexed by time. On the other hand, for each fixed $\omega \in \Omega$, $X_t(\omega)$ is a curve or path in the set I. So that we can think of a stochastic process as a random variable whose values are paths in I. Both of these points of view are valid and each will be useful in various contexts.

Definition 4.9. Consider a discrete-time stochastic process $(X_t)_{t \geq 0}$ defined on an underlying probability space (Ω, \mathcal{F}, P) and taking values in the set I. The random process is called a discrete-time Markov chain with initial distribution λ and transition matrix P if,

1. $X_0 \sim \lambda$, where λ is the initial distribution
2. $P(X_n = j | X_0 = x_0, X_1 = x_1, \ldots, X_{n-1} = i) = P(X_n = j | X_{n-1} = i) = p_{ij}$, implies, given X_{n-1}, the random number X_n is independent of the history, $X_0, X_1, \ldots, X_{n-2}$.

Here, $P = ((p_{ij}))$ is called the transition matrix and we will use the notation $(X_t)_{t \geq 0} \sim \text{Markov}(\lambda, P)$.

If p_{ij}'s are independent of time (consequently, transition matrix P is also independent of time), then the Markov chain is called the time-homogeneous Markov chain.

4.2.1 Examples

Random Walk on integers: Consider the set of integers and a Markov chain $(X_i)_{i \geq 0}$. The random variables take integer values, i.e. $I = \mathbb{Z}$. Consider $X_0 = 1$ (or some other distribution λ). The value of the random variable in the next step increases by 1 with probability 1/4, decreases by 1 with probability 1/4, and stays the same with probability 1/2. This can be formally written as

$$p_{ij} = \begin{cases}
1/4, & j = i + 1 \\
1/4, & j = i - 1 \\
1/2, & j = i \\
0, & \text{otherwise}
\end{cases}$$

The transition probability matrix, P, has a special structure (tridiagonal matrix) in this example and we write, $(X_t)_{t \geq 0} \sim \text{Markov}(\lambda, P)$. This process denoted as $(X_t)_{t \geq 0} \sim \text{Markov}(\lambda, P)$, is also called Lazy Random Walk. It is called lazy since the Markov chain stays the same with a probability of 1/2.
Random Walk with absorption: Consider an integer n and a Markov chain $(X_t)_{t \geq 0}$. The random variables take integer values in $I = \{-N, -(N-1), \ldots, -1, 0, 1, \ldots, N\}$. Consider $X_0 = 1$ (or some distribution λ). The value of the random variable in the next step increases by 1 with probability $1/4$, decreases by 1 with probability $1/4$, and stays the same with probability $1/2$. Moreover, once the random variable reaches the end, $\{\pm N\}$, the random variable stays there with a probability of 1. We can write the transition probability matrix as,

$$P = \begin{bmatrix}
1 & 0 & 0 & 0 & \ldots & 0 \\
0.25 & 0.5 & 0.25 & 0 & \ldots & 0 \\
0 & 0.25 & 0.5 & 0.25 & \ldots & 0 \\
0 & 0 & 0.25 & \ddots & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1
\end{bmatrix}.$$

Pattern Recognition: Consider a sequence of i.i.d. Ber(p) random variables $Y_t, t \geq 0$ where Y_0 takes value 1 with probability p and takes value 0 with probability $1 - p$. Now let us focus on finding the pattern $S = (1, 1)$, i.e., the value of two successive random variables is 1. We consider new random variables X_t defined as $X_0 = (Y_0, Y_1), X_1 = (Y_1, Y_2), \ldots, X_t = (Y_t, Y_{t+1}), \ldots$. The random variable X_t takes values in set $I = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$. The transition probabilities for X can be written as,

$$P(X_n = (c, d) \mid X_{n-1} = (a, b)) = \begin{cases}
0, & \text{if } b \neq c \\
p, & \text{if } b = c \text{ and } d = 1 \\
1 - p, & \text{if } b = c \text{ and } d = 0
\end{cases} \quad \rightarrow P = \begin{bmatrix}
1 - p & p & 0 & 0 \\
0 & 0 & 1 - p & p \\
1 - p & p & 0 & 0 \\
0 & 0 & 1 - p & p
\end{bmatrix}.$$

![Pattern Recognition as Markov Process.](image)