6.1 Kolmogorov’s maximal inequality

Theorem 6.1 (Kolmogorov’s Maximal Inequality). Let \(X_1, \ldots, X_n \) be independent random variables with \(\mathbb{E} X_i = 0, \mathbb{E} X_i^2 < \infty \) for all \(1 \leq i \leq n \). Define \(S_n = X_1 + \cdots + X_n \). Then

\[
\mathbb{P} \left(\max_{1 \leq k \leq n} |S_k| \geq a \right) \leq \frac{\mathbb{E} S_n^2}{a^2}
\]

for any \(a > 0 \).

\[\text{Proof Sketch:}\] Let \(A_i = \{ |S_1| < a, |S_2| < a, \ldots, |S_{i-1}| < a, |S_i| \geq a \}, \ i = 1, 2, \ldots, n \). Then \(A_i \cap A_j = \emptyset \) for all \(i \neq j \). Notice that \(\mathbb{P} \left(\max_{1 \leq k \leq n} |S_k| \geq a \right) = \sum_{i=1}^{n} \mathbb{P}(|S_i| \geq a, \max_{1 \leq k < i} |S_k| < a) \). Then

\[
\mathbb{E} S_n^2 = \sum_{i=1}^{n} \mathbb{E} S_i^2 \mathbb{1}_{A_i} = \sum_{i=1}^{n} \mathbb{E}(S_i^2 + 2S_i(S_n - S_i) + (S_n - S_i)^2) \mathbb{1}_{A_i}
\]

\[
\geq \sum_{i=1}^{n} (a^2 \mathbb{P}(A_i) + 2 \mathbb{E} S_{i+1} \mathbb{1}_{A_i}(S_n - S_i)) = a^2 \mathbb{P} \left(\max_{1 \leq k \leq n} |S_k| \geq a \right).
\]

In the last line we used the fact that \(S_i \mathbb{1}_{A_i} \) is independent of \(X_{i+1}, \ldots, X_n \).

Theorem 6.2 (Basic L^2-convergence). Let \(X_1, X_2, \cdots \) be independent r.v.’s with \(\mathbb{E}(X_i) = 0 \) and \(\sum_{i=1}^{\infty} \text{Var}(X_i) < \infty \). Then \(S_n = \sum_{i=1}^{n} X_i \) converges in \(L^2 \) and a.s.

\[\text{Proof.}\] To see \(L^2 \)-convergence, we will prove that \((S_n)_{n \geq 1} \) is Cauchy in \(L^2 \). It is enough to show that \(||S_n - S_m||_2 < \varepsilon \) for all \(n, m \geq N(\varepsilon) \). Suppose \(n > m \), then we obtain

\[
||S_n - S_m||_2^2 = \mathbb{E}(S_n - S_m)^2 = \mathbb{E}(X_{m+1} + X_{m+2} + \cdots + X_n)^2
\]

\[
= \text{Var}(X_{m+1} + X_{m+2} + \cdots + X_n)
\]

\[
= \text{Var}(X_{m+1}) + \text{Var}(X_{m+2}) + \cdots + \text{Var}(X_n).
\]

For any \(\varepsilon > 0 \), there exists \(N = N(\varepsilon) \) with \(\sum_{i=N}^{\infty} \text{Var}(X_i) < \varepsilon^2 \), thus we have \(||S_n - S_m||_2 < \varepsilon \) for all \(n, m \geq N(\varepsilon) \) which implies that \((S_n)_{n \geq 1} \) is a Cauchy sequence in \(L^2 \) and therefore converges in \(L^2 \). Now, it remains to show a.s. convergence. In other words, we need to show \(\mathbb{P}(S_n \text{ converges}) = 1 \). Define \(M_N = \max\{|S_n - S_m| : n, m \geq N\} \), then clearly \(M_N \) is decreasing. Indeed, it is enough to
show that $M_N \xrightarrow{p} 0$ as $N \to \infty$. Let $\varepsilon > 0$ be given. Then,

$$
P(M_N > \varepsilon) = P(\max_{n,m \geq N} |S_n - S_m| > \varepsilon) \leq P(\max_{k > N} |S_{N+k} - S_N| > \varepsilon/2)
$$

$$
= \lim_{n \to \infty} P(\max_{1 \leq k \leq n} |S_{N+k} - S_N| > \varepsilon/2)
$$

$$
\leq \lim_{n \to \infty} \frac{\text{Var}(S_{N+n} - S_N)}{(\varepsilon/2)^2}
$$

$$
= \lim_{n \to \infty} \left(\frac{2}{\varepsilon}\right)^2 \cdot \sum_{i=N+1}^{N+n} \text{Var}(X_i) = \left(\frac{2}{\varepsilon}\right)^2 \cdot \sum_{i>N} \text{Var}(X_i),
$$

where the second inequality follows by Kolmogorov’s Maximal inequality. Hence, $\lim_{N \to \infty} P(M_N > \varepsilon) = 0$ or $M_N \xrightarrow{p} 0$, thus we obtain $M_N \to 0$ a.s. Therefore, $P((S_n)_{n \geq 1}$ is Cauchy) = 1. \hfill \blacksquare

Using basic L^2-convergence theorem, we can give a simple proof of SLLN under finite second moment. Let X_1, X_2, \ldots be i.i.d. with $\mathbb{E}X_1 = 0$ and $\text{Var}(X_1) < \infty$. By basic L^2-convergence theorem, we have $\sum_{k=1}^n X_k/k$ converges a.s as $n \to \infty$. Now, using Kronecker’s lemma (stated and proved below), we have $n^{-1} \sum_{k=1}^n X_k \to 0$ a.s.

Lemma 6.3 (Kronecker’s lemma). Let $a_n \uparrow \infty$ and $\sum_{i=1}^n \frac{x_i}{a_i}$ converges. Then

$$
\frac{1}{a_n} \sum_{i=1}^n x_i \to 0
$$

Proof. We have $b_n := \sum_{i=1}^n \frac{x_i}{a_i} \to b$, for some $b \in \mathbb{R}$, as $n \to \infty$. Moreover, $x_n = a_n(b_n - b_{n-1})$ so

$$
\frac{1}{a_n} \sum_{i=1}^n x_i = \frac{1}{a_n} \sum_{i=1}^n (a_ib_i - a_{i-1}b_{i-1}) = \frac{1}{a_n} (a_nb_n + \sum_{i=1}^{n-1} (a_i - a_{i+1})b_i) = b_n - \frac{1}{a_n} \sum_{i=1}^{n-1} (a_{i+1} - a_i)b_i.
$$

Let $d_i = a_{i+1} - a_i$. We know that $b_n \to b$ and thus

$$
\frac{\sum_{i=1}^{n-1} d_i b_i}{\sum_{i=1}^{n-1} d_i} - b = \frac{\sum_{i=1}^{n-1} d_i (b_i - b)}{\sum_{i=1}^{n-1} d_i} \to 0
$$

as $n \to \infty$, since $d_i \geq 0$ and $\sum_{i \geq 1} d_i = \infty$. So this proves that $\frac{1}{a_n} \sum_{i=1}^n x_i \to 0$ completing the proof. \hfill \blacksquare

6.2 Applications of SLLN

Theorem 6.4 (Renewal Theorem). Let X_1, X_2, \ldots be a sequence of i.i.d. r.v.’s with $X_i \geq 0$, $\mathbb{E}X_1 = \mu > 0$. Then

$$
\frac{N_t}{t} \xrightarrow{a.s.} \frac{1}{\mu},
$$

where $N_t = \sup\{n \mid X_1 + X_2 + \cdots + X_n \leq t\}$.
Week 6: Kolmogorov’s Maximal Inequality and Applications of SLLN

6-3

Proof Sketch: By SLLN, if \(S_n = X_1 + X_2 + \cdots + X_n \), then \(\frac{S_n}{n} \xrightarrow{a.s.} \mu \) as \(n \to \infty \). We observe that

- \(N_t \uparrow \infty \) a.s. as \(t \to \infty \). \((\{N_t \geq n\} = \{X_1 + X_2 + \cdots + X_n \leq t\})\).
- \(\mathbb{P}\left(\frac{S_n}{n} \xrightarrow{n \to \infty} \mu, N_t \xrightarrow{t \to \infty} \infty \right) = 1 \) or \(\mathbb{P}\left(\frac{S_{N_t}}{N_t} \xrightarrow{t \to \infty} \mu, \frac{S_{N_t+1}}{N_t+1} \xrightarrow{t \to \infty} \mu \right) = 1 \).

By definition, we have \(S_{N_t} \leq t < S_{N_t+1} \) so that

\[
\frac{S_{N_t}}{N_t} \leq \frac{t}{N_t} < \frac{S_{N_t+1}}{N_t+1} = \frac{S_{N_t+1}}{N_t+1} \cdot \frac{N_t+1}{N_t}.
\]

Both upper and lower bounds converges to \(\mu \) a.s. and this completes the proof. \(\blacksquare \)

Definition 6.5 (Empirical Distribution). Let \(X_1, X_2, \cdots \) be a sequence of i.i.d. r.v.'s with distribution function \(F \). Define

\[
F_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \leq x} \text{ for all } x \in \mathbb{R}.
\]

\(F_n \) is called the empirical distribution function. By SLLN, \(F_n(x) \xrightarrow{a.s.} F(x) \), for each \(x \in \mathbb{R} \).

Theorem 6.6 (Glivenko-Cantelli Lemma). We have

\[
||F_n - F||_\infty = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \xrightarrow{a.s.} 0.
\]

Proof Sketch: Fix \(k \geq 1 \), define

\[
x_{j,k} = F^{-1}\left(\frac{j}{k}\right) = \inf\left\{x : F(x) \geq \frac{j}{k}\right\}, \quad 1 \leq j < k.
\]

Define \(x_{0,k} = -\infty, x_{k,k} = \infty \). By SLLN,

\[
\mathbb{P}\left(F_n(x_{j,k}) \xrightarrow{a.s.} F(x_{j,k}) \forall 0 \leq j \leq k\right) = 1.
\]

Similarly,

\[
F_n(x-) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i < x} \xrightarrow{a.s.} F(x-).
\]

Thus

\[
\mathbb{P}\left(F_n(x_{j,k}-) - F(x_{j,k}-) \to 0, \; F_n(x_{j,k}) - F(x_{j,k}) \to 0 \forall 0 \leq j \leq k\right) = 1.
\]

Define

\[
\Delta_k^{(n)} = \max_{0 \leq j \leq k} \{|F_n(x_{j,k}) - F(x_{j,k})|, |F_n(x_{j,k}-) - F(x_{j,k}-)|\}.
\]

Take \(x \) in \([x_{j,k}, x_{j+1,k})\). Then,

\[
F_n(x_{j,k}) \leq F_n(x) \leq F_n(x_{j+1,k}-) \implies F_n(x_{j,k}) - F(x) \leq F_n(x) - F(x) \leq F_n(x_{j+1,k}-) - F(x).
\]

Since

\[
|F_n(x_{j+1,k}-) - F(x)| \leq |F_n(x_{j+1,k}-) - F(x_{j+1,k}-)| + |F(x_{j+1,k}-) - F(x)| \leq \Delta_k^{(n)} + \frac{1}{k}
\]

and

\[|F_n(x_{j,k}) - F(x)| \leq |F_n(x_{j,k}) - F(x_{j,k})| + |F(x_{j,k}) - F(x)| \leq \Delta_k^{(n)} + \frac{1}{k}, \]

we have \(\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \leq \Delta_k^{(n)} + \frac{1}{k} \). Note that \(\Delta_k^{(n)} \xrightarrow{a.s.} 0 \). Thus

\[
P \left(\limsup_n \|F_n - F\|_\infty \leq \frac{1}{k} \right) = 1 \quad \forall k
\]

\[
\implies P \left(\limsup_n \|F_n - F\|_\infty \leq \frac{1}{k} \right) = 1,
\]

\[
\implies P \left(\limsup_n \|F_n - F\|_\infty = 0 \right) = 1.
\]

\[\blacksquare\]

Remark. See ”Bootstrap” in statistics for applications of Glivenko-Cantelli Lemma.

6.3 Tail events and Kolmogorov’s 3-Series Theorem

Definition 6.7 (Tail \(\sigma \)-field). Let \(X_1, X_2, \ldots \) be independent r.v.s. The \(\sigma \)-field

\[
\mathcal{T} = \bigcap_{k=1}^{\infty} \sigma(X_k, X_{k+1}, \ldots)
\]

is called the tail \(\sigma \)-field.

Example 6.8. We have \(\{ \lim X_n \text{ exists} \} \in \mathcal{T}, \{ \limsup_n (X_1 + \ldots + X_n)/n \leq a \} \in \mathcal{T}. \) However, the event \(\{ \limsup_n (X_1 + \ldots + X_n) \leq a \} \notin \mathcal{T}. \)

Theorem 6.9 (Kolmogorov’s 0-1 Law). For all \(A \in \mathcal{T}, P(A) \in \{0, 1\}. \)

Proof. We will prove that \(\mathcal{T} \perp \mathcal{T} \) (the tail \(\sigma \)-field is independent of itself). Then for all \(A \in \mathcal{T}, \)

\[
P(A) = P(A \cap A) = P(A) \cdot P(A)
\]

which implies \(P(A) \in \{0, 1\}. \) The proof is in 4 steps.

Step 1. \(\sigma(X_1, \ldots, X_{k-1}) \perp \sigma(X_{l+1}, X_{l+2}, \ldots) \) for all \(l \geq k \), since \(X_i \)'s are independent.

Step 2. In particular, \(\sigma(X_1, \ldots, X_{k-1}) \perp \mathcal{T} \) for all \(k \geq 2 \).

Step 3. \(\sigma(X_1, \ldots) \perp \mathcal{T} \).

Step 4. \(\mathcal{T} \perp \mathcal{T} \).

Proof of step 1: Clearly \(\sigma(X_1, \ldots, X_{k-1}) \perp \sigma(X_l, \ldots, X_{l+j}) \) for all \(l \geq k, j \geq 0 \), which implies that

\[
\sigma(X_1, \ldots, X_{k-1}) \perp \bigcup_{j=0}^{\infty} \sigma(X_l, \ldots, X_{l+j}).
\]
By \(\pi - \lambda \) theorem, \(\sigma(X_1, \ldots, X_{k-1}) \perp \sigma(\cup_{j=0}^{\infty} \sigma(X_i, \ldots, X_{i+j})) = \sigma(X_i, X_{i+1}, \ldots).

Proof of step 2: Note that \(\mathcal{F} \perp \mathcal{G} \) implies that any sub \(\sigma \)-field of \(\mathcal{F} \) is independent of \(\mathcal{G} \). (\(*\))

Clearly \(\mathcal{T} \subseteq \sigma(X_k, X_{k+1}, \ldots) \). So by (\(*\)), \(\sigma(X_1, \ldots, X_{k-1}) \perp \mathcal{T} \).

Proof of step 3: We have \(\bigcup_{k \geq 1} \sigma(X_1, \ldots, X_{k-1}) \perp \mathcal{T} \). Thus by \(\pi - \lambda \) theorem, \(\sigma(X_1, \ldots) \perp \mathcal{T} \).

Proof of step 4: Clearly \(\mathcal{T} \subseteq \sigma(X_1, X_2, \ldots) \). So by (\(*\)), we have the proof. \(\blacksquare \)

Theorem 6.10 (Kolmogorov’s 3-series Theorem). Let \(X_1, X_2, \ldots \) be independent. Fix \(b > 0 \). Consider the three deterministic series:

\[
\begin{align*}
(i) \quad & \sum_{i=1}^{n} \mathbb{P}(|X_i| > b), \\
(ii) \quad & \sum_{i=1}^{n} \mathbb{E}(X_i \mathbb{1}_{|X_i| \leq b}), \\
(iii) \quad & \sum_{i=1}^{n} \text{Var}(X_i \mathbb{1}_{|X_i| \leq b}).
\end{align*}
\]

Then

\[\sum_{i=1}^{n} X_i \text{ converges a.s. if and only if } (i), (ii), (iii) \text{ converge.} \]

Proof. We will first prove the if part. Write \(X_i = U_i + v_i + W_i \), where

\[U_i := X_i \mathbb{1}_{|X_i| > b}, \quad v_i := \mathbb{E}X_i \mathbb{1}_{|X_i| \leq b}, \quad \text{and } W_i := X_i \mathbb{1}_{|X_i| \leq b} - v_i. \]

By convergence of (ii), we have \(\sum_{i \geq 1} v_i < \infty \). We will prove that both \(\lim_{n \to \infty} \sum_{i=1}^{n} U_i \) and \(\lim_{n \to \infty} \sum_{i=1}^{n} W_i \) exists a.s. By Borel-Cantelli Lemma and convergence of series (i), we have \(\mathbb{P}(|X_i| > b \text{ i.o.}) = 0 \) which implies that \(\lim_{n \to \infty} \sum_{i=1}^{n} U_i \) exists a.s. Convergence of (iii) and Basic \(L^2 \) convergence implies \(\lim_{n \to \infty} \sum_{i=1}^{n} W_i \) exists a.s.

For the only if part, we need to use Central Limit Theorem, which states that for a sequence of iid mean zero, variance one rvs \(X_1, X_2, \ldots \), the sequence \(n^{-1/2} S_n \) converges in distribution to \(N(0, 1) \) and will be proved later. \(\blacksquare \)

Another application of Central Limit Theorem and truncation + subsequence technique is the following result, which will not be proved here. The crucial idea is that \(S_n/\sqrt{n} \) converges in distribution to \(N(0, 1) \) and for a rv \(X \sim N(0, 1) \) we have \(\mathbb{P}(X \geq t) = \mathbb{P}(X \leq -t) \leq e^{-t^2/2}, t > 0 \).

Theorem 6.11 (Law of Iterated Logarithms (LIL)). Let \(X_1, X_2, \ldots \) be i.i.d. with mean 0, \(\text{Var}(X_1) = 1 \). Define \(S_n = \sum_{i=1}^{n} X_i \). Then

\[\lim \sup_{n} \frac{S_n}{\sqrt{2n \log \log n}} = 1 \text{ a.s.} \]

\[\lim \inf_{n} \frac{S_n}{\sqrt{2n \log \log n}} = -1 \text{ a.s.} \]

A sequence \(\{t_n\}_{n \geq 1} \) is subadditive, if \(t_{m+n} \leq t_m + t_n \) for all \(m, n \geq 1 \). The following lemma for a deterministic sequence can be generalize to random sequences to give another proof of SLLN.

Theorem 6.12 (Subadditive limit theorem). If \(\{t_n\}_{n \geq 1} \) is subadditive, then

\[\frac{t_n}{n} \to \inf_{m \geq 1} \frac{t_m}{m} \text{ as } n \to \infty. \]
Proof. Clearly, \(\liminf_n t_n/n \geq \inf_{m \geq 1} t_m/m \). Note that, \(t_{mn+k} \leq nt_m + t_k \) for \(m, n, k \geq 1 \). Thus

\[
\frac{t_{mn+k}}{mn + k} \leq \frac{nt_m + t_k}{mn + k} = \frac{\frac{t_m}{m} + \frac{t_k}{mk}}{1 + \frac{k}{mn}}
\]

Fix \(m \geq 1 \) and \(0 \leq k < m \), then

\[
\limsup_n \frac{t_{mn+k}}{mn + k} \leq \frac{t_m}{m}.
\]

Thus,

\[
\limsup_n \frac{t_n}{n} \leq \frac{t_m}{m}.
\]

Since \(m \) is arbitrary, we have

\[
\limsup_{n \to \infty} \frac{t_n}{n} \leq \inf_{m \geq 1} \frac{t_m}{m}.
\]

Corollary 6.13. Let \(X_1, X_2, \ldots \) be i.i.d. r.v.s. Define \(S_n = X_1 + X_2 + \cdots + X_n, n \geq 1 \). Then,

\[
\kappa(a) := \lim_{n \to \infty} -\frac{1}{n} \log P(S_n \geq a)
\]

exists and is non-negative (need not be finite).

Proof. We use the fact that \(P(S_{n+m} \geq (n + m)a) \geq P(S_m \geq ma, S_{n+m} - S_m \geq na) \geq P(S_m \geq ma) \cdot P(S_n \geq na) \) and thus the sequence \(t_n := -\log P(S_n \geq a) \geq 0 \) is subadditive. ■

In the next lecture, we will study conditions under which \(\kappa(a) \) is positive and finite. The random version of the subadditive limit theorem is stated below without proof.

Theorem 6.14 (Subadditive ergodic theorem). Let \(\{X_{m,n} \mid n > m \geq 0\} \) be a collection of r.v.s indexed by integers \(n > m \geq 0 \), such that

\[
X_{0,n} \leq X_{0,m} + X_{m,n} \text{ a.s. for } 0 < m < n.
\]

Assume that

(a) The joint distributions of \(\{X_{m+1,m+k+1}, k \geq 1\} \) are the same as those of \(\{X_{m,m+k}, k \geq 1\} \) for each \(m \geq 0 \),

(b) For each \(k \geq 1 \), \(\{X_{nk,(n+1)k}, n \geq 1\} \) is a stationary process and

(c) For each \(n \), \(E|X_{0,n}| < \infty \) and \(E X_{0,n} \geq -cn \) for some constant \(c \).

Then, \(\frac{1}{n}X_{0,n} \) converges a.s. and in \(L^1 \) to a r.v. \(X \) and \(E X \in [-c, \infty) \). Moreover, if the processes in (b) are ergodic, then \(X \) is a constant a.s.

6.4 Large Deviation Principle

Let \(X_1, X_2, \ldots \) be i.i.d. r.v.s with mean \(\mu \) and \(S_n := X_1 + X_2 + \cdots + X_n, n \geq 1 \). By SLLN, \(S_n/n \to 0 \) a.s. and thus for any \(a > \mu \), \(\lim_{n \to \infty} P(S_n/n \geq a) = 0 \). By previous result, we know that \(\kappa(a) := -\lim_{n \to \infty} \frac{1}{n} \log P(S_n/n \geq a) \) exists and \(\kappa(a) \in [0, \infty] \). One can also prove the following.
Exercise 6.15. The following are equivalent: (a) \(\kappa(a) = \infty \), (b) \(P(X_1 \geq a) = 0 \), and (c) \(P(S_n \geq na) = 0 \) for all \(n \geq 1 \).

We will use Large Deviation Principle (LDP) to find \(\kappa(\cdot) \). Assume that

\[
m(\theta) := E e^{\theta X_1} < \infty \text{ if } \theta \in \Theta \text{ and is infinite if } \theta \in \overline{\Theta}^c,
\]

where \(\Theta \) is an open interval containing 0. Using H"older’s inequality, we can prove that \(\log m(\cdot) \) is a convex function (and thus \(\Theta \) must be an interval).

The Legendre transform of \(\log m(\cdot) \) is defined as,

\[
\ell(a) := \sup_{\theta \in \Theta} (a \theta - \log m(\theta)) \geq 0
\]

which is also convex in \(a \). If \(m(\cdot) \) is differentiable in \(\Theta \), then \(\ell(a) = a \theta^* - \log m(\theta^*) \) where \(\theta^* \) satisfies \(m'(\theta^*) = am(\theta^*) \).

Theorem 6.16. Let \(X_1, X_2, \ldots \) be i.i.d. r.v.s with mean \(\mu \) and the function \(\ell(\cdot) \) is defined as above. Then for \(a > \mu \), we have

\[
\lim_{n \to \infty} \frac{1}{n} \log P(S_n/n \geq a) = -\ell(a).
\]

Same result holds for \(P(S_n/n \leq a) \) with \(a < \mu \).

Proof. We will only prove the upper bound for \(P(S_n/n \geq a) \). The lower bound is bit complicated and involves change of measure. Wlog, we can assume that \(\mu = 0 \), o.w. work with \(X_1 - \mu \). By Markov’s inequality, we have

\[
P(S_n \geq an) = P(e^{\theta S_n} \geq e^{\theta an}) \leq e^{-a \theta n} E e^{\theta S_n} = e^{-a \theta n} \prod_{i=1}^n E e^{\theta X_i} = e^{-a \theta n} (m(\theta))^n,
\]

for \(\theta \in [0, \infty) \cap \Theta \). This implies that, \(\log P(S_n/n \geq a) \leq -n(a \theta - \log m(\theta)) \) for \(\theta \in [0, \infty) \cap \Theta \). Hence

\[
\frac{1}{n} \log P(S_n/n \geq a) \leq - \sup_{\theta \in [0, \infty) \cap \Theta} (a \theta - \log m(\theta))
\]

Note that, by Jensen’s inequality we have \(\log m(\theta) \geq 0 \) for all \(\theta \in \Theta \) and for \(a > 0, \theta < 0 \) we have \(\theta a - \log m(\theta) \leq 0 \). Thus, we have

\[
\sup_{\theta \in [0, \infty) \cap \Theta} (a \theta - \log m(\theta)) = \sup_{\theta \in \Theta} (a \theta - \log m(\theta)) = \ell(a).
\]

Example 6.17. Let \(X_1, X_2, \ldots \) be i.i.d. \(N(0, 1) \) r.v.s with mean 0, variance 1 and let \(S_n := X_1 + X_2 + \cdots + X_n, n \geq 1 \). Then

\[
m(\theta) = E e^{\theta X_1} = e^{\theta^2/2} \text{ for } \theta \in \mathbb{R}.
\]

Thus,

\[
\ell(a) = \sup_{\theta \in \mathbb{R}} (a \theta - \log m(\theta)) = \sup_{\theta \in \mathbb{R}} (a \theta - \theta^2/2) = a^2/2
\]

for \(a \in \mathbb{R} \). Thus, for \(a > 0 \) we have

\[
\frac{1}{n} \log P(S_n/n \geq a) \to -a^2/2.
\]
Example 6.18. Let X_1, X_2, \ldots be i.i.d. Poisson(λ) r.v.s with mean $\lambda > 0$ and let $S_n := X_1 + X_2 + \cdots + X_n$, $n \geq 1$. Then

$$m(\theta) = \mathbb{E} e^{\theta X_1} = e^{\lambda(e^\theta - 1)} \text{ for } \theta \in \mathbb{R}. $$

Thus,

$$\ell(a) = \sup_{\theta \in \mathbb{R}} (a\theta - \log m(\theta)) = \sup_{\theta \in \mathbb{R}} (a\theta - \lambda(e^\theta - 1)) = a \log (a/e\lambda) + \lambda$$

for $a > 0$. Thus, for $t > 1$ we have

$$\frac{1}{n} \log \mathbb{P}(S_n/n \geq t\lambda) \to -\lambda(t \log t - t + 1).$$