
Math 561: Theory of Probability (Spring 2023) Week 13

Wald’s Identities

13.1 Doob’s martingale transform

Definition 13.1 (Martingale difference sequence). Let (Fn) be a filtration and (∆n) be an
adapted sequence of random variables to (Fn). Then (∆n) is a Martingale difference sequence
if it satisfies 1) ∆n ∈ L1(Fn), 2) E(∆n+1 | Fn) = 0 for all n ⩾ 0.

Observe that it is possible to give an equivalent definition of Martingale in term of Martingale
difference sequence as follows: Let (Fn) be a filtration and (∆n) be a Martingale difference sequence.
Then the sequence (Mn) defined by

Mn =
n∑

i=0

∆i, n ⩾ 1

is a Martingale. Notice that if 2) is changed to E(∆n+1 | Fn) ⩾ 0 (E(∆n+1 | Fn) ⩽ 0), then (Mn)
is a sub-martingale (super-martingale).

Theorem 13.2 (Doob’s martingale transform). Suppose (Mn,Fn)n⩾0 is a martingale and
(Hn,Fn)n⩾0 is predictable. Define

∆n = Mn −Mn−1, (H ·M)n =
n∑

i=1

Hi∆i

for n ⩾ 1. Then ((H ·M)n,Fn) is a martingale whenever E |(H ·M)n| < ∞ for all n.

Proof. Since (H · M)n+1 − (H · M)n = Hn+1 · ∆n+1, we have for n ⩾ 0, E(Hn+1∆n+1 | Fn) =
Hn+1E(∆n+1 | Fn) = 0. ■

Observe that if Hn ⩾ 0, then (Mn) is a sub-martingale (super-martingale) implies (H · M)n is a
sub-martingale (super-martingale).

Theorem 13.3. If (Mn,Fn) is a martingale (sub/super-martingale) and T is a stopping time with
respect to a filtration (Fn), then

Wn = Mn∧T , n ⩾ 0

is a (Fn)−martingale (sub/super-martingale).

Proof. Notice that

Mn∧T =

n∧T∑
i=1

∆i =

n∑
i=1

∆i1T⩾i.

In particular, E(Mn∧T ) = E(M0) for all n ⩾ 0. ■
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Note that, Mn∧T
a.s.−→ MT as n → ∞ when MT is well-defined a.s.

Example 13.4. Let (Xi) be an iid sequence of random variable which is identically distributed to
simple random walk on Z. Let Mn = Sn =

∑n
i=1Xi. Then E(M0) = 0. Let T = inf{n | Sn ⩾ 1}.

Then

MT = ST = 1 yields E(MT ) = 1 ̸= E(M0).

This example shows that it is not always true that E(M0) = limE(Mn∧T ) = E(limMn∧T ) = E(MT ).

Notice that if T is bounded by some k, then n ∧ T = T for n ⩾ k and Mn∧T = MT , n ⩾ k.

13.2 Wald’s Identities

Theorem 13.5 (Wald’s first identity). Let (Xn, n ⩾ 1) be a sequence of mean zero independent
r.v.s with supi⩾1E |Xi| < ∞. Consider the martingale

Mn = Sn := X1 +X2 + · · ·+Xn, Fn := σ(X1, . . . , Xn), n ⩾ 0.

Let T be a (Fn, n ⩾ 0) stopping time with ET < ∞. Then

E(MT ) = E(M0) = 0.

In particular, if Xi’s are i.i.d. r.v.s with EX1 = µ and T is a (σ(X1, . . . , Xn), n ⩾ 0) stopping time
with ET < ∞, then

EST = µET.

Proof. We have MT∧n =
∑n

i=1Xi1T⩾i → MT a.s. as n → ∞. Moreover E(MT∧n) = 0 for n ⩾ 0.
By the fact that Xi ⊥ Fi−1,1T⩾i = 1T>i−1 ∈ Fi−1 we have

E

∞∑
i=1

|Xi| · 1T⩾i =
∞∑
i=1

E(|Xi|1T⩾i) =
∞∑
i=1

E |Xi| · E(1T⩾i) ⩽ sup
i⩾1
E |Xi| · ET < ∞.

Using DCT with |MT∧n| ⩽
∑∞

i=1 |Xi| · 1T⩾i for all n ⩾ 0 we get the result. ■

Theorem 13.6 (Wald’s second identity). Let (Xn, n ⩾ 1) be a sequence of mean zero indepen-
dent r.v.s with supi⩾1EX2

i < ∞. Consider the martingale

Mn = S2
n −

n∑
i=1

EX2
i , Fn := σ(X1, . . . , Xn), n ⩾ 0

where Sn := X1 +X2 + · · ·+Xn. Let T be a (Fn, n ⩾ 0) stopping time with ET < ∞. Then

E(MT ) = E(M0) = 0.

In particular, if Xi’s are i.i.d. r.v.s with EX1 = 0,Var(X1) = σ2 and T is a (σ(X1, . . . , Xn), n ⩾ 0)
stopping time with ET < ∞, then

ES2
T = σ2ET.



Week 13: Wald’s Identities 13-3

Proof. Let σ2
i = EX2

i for i ⩾ 1. We have

EMT∧n = ES2
T∧n − E

T∧n∑
i=1

σ2
i = 0 for all n ⩾ 0.

Now

ST∧n =

n∑
i=1

Xi1T⩾i → ST =

∞∑
i=1

Xi1T⩾i a.s. as n → ∞,

Xi is orthogonal to Fi−1 and 1T⩾i ∈ Fi−1 for i ⩾ 1. Thus

E(Xi1T⩾i ·Xj1T⩾j) = 0

for all i ̸= j and for 0 ⩽ n < ∞

sup
m⩾n

||ST∧m − ST∧n||22 = sup
m⩾n

m∑
i=n+1

||Xi1T⩾i||22

= sup
m⩾n

∑
i>n

E(X2
i 1T⩾i) =

∑
i>n

EX2
i · E(1T⩾i) ⩽ sup

i⩾1
EX2

i ·
∑
i>n

E(1T⩾i).

Thus, (ST∧n) is L2-Cauchy and ES2
T∧n → ES2

T . Similar argument and DCT shows that

E
∑T∧n

i=1 σ2
i → E

∑T
i=1 σ

2
i . Thus we have the result. ■

Theorem 13.7 (Wald’s third identity). Let (Xn, n ⩾ 1) be a sequence of i.i.d. r.v.s with
E(eθX1) = ϕ(θ) < ∞. Let T be a (σ(X1, X2, . . . , Xn))−stopping time. If T is a.s. bounded or

ϕ(θ)−n · eθSn · 1T⩾n ⩽ K for all n ⩾ 0,

then
E
(
ϕ(θ)−T · eθST

)
= 1.

Proof. Since Mn := ϕ(θ)−n · eθSn is a martingale w.r.t. the filtration Fn := σ(X1, . . . , Xn), n ⩾ 0,
we have E(MT∧n) = E(MT∧0) = 1. The results follows in the first case by the fact that T ⩽ K
a.s. implies T ∧K = T and in the second case by DCT. ■
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We provide some examples to illustrate how to use Wald’s identities.

Example 13.8 (SSRW (Simple Symmetric Random Walk) on Z). Let (Xn) be a sequence
of i.i.d. r.v.s with P(X1 = +1) = P(X1 = −1) = 1/2,EX1 = 0,EX2

1 = 1. Define S0 = 0, Sn :=
Sn−1 +Xn, n ⩾ 1. Let a, b ∈ Z with a, b > 0. Define

T = inf{n ⩾ 0 | Sn = −a or Sn = b}.

Then ET < ∞, by using second moment martingale to get E(T ∧ n) = ES2
T∧n ⩽ a2 + b2 for all

n ⩾ 0.

Moreover, by Wald’s first identity we have E(ST ) = 0, i.e.,

aP(ST = −a) = bP(ST = b) = b(1− P(ST = a)).

So

P(ST = −a) =
b

a+ b
,P(ST = b) =

a

a+ b
.

Example 13.9 (SRW (Simple Random Walk) with drift). Fix p ∈ (0, 1), p ̸= 1/2. Let
(Xn) be a sequence of i.i.d. r.v.s with P(X1 = +1) = p,P(X1 = −1) = q = 1 − p, µ := EX1 =
2p− 1,EX2

1 = 1. Define S0 = 0, Sn := Sn−1 +Xn, n ⩾ 1. Let a, b ∈ Z with a, b > 0. Define

T = inf{n ⩾ 0 | Sn = −a or Sn = b}.

By Wald’s first identity, we have

E(T ∧ n) = µ−1EST∧n ⩽ |µ|−1 · (a+ b) for all n ⩾ 0

and thus ET < ∞. Choose θ = log(q/p) ∈ R so that eθ = q/p and E eθX1 = 1. We also have
eθSn1{T⩾n} ⩽ e|θ|·(a+b) for all n ⩾ 0. By Wald’s Third Identity we have

1 =

(
q

p

)−a

P(ST = −a) +

(
q

p

)b

(1− P(ST = −a)).

Thus, we have

P(ST = −a) =
pbqa − qa+b

pa+b − qa+b
and P(ST = b) =

pa+b − pbqa

pa+b − qa+b
.

Using Wald’s third identity with general θ ∈ R, one can calculate the probabilities P(T =
k), k ⩾ 0 (see the homework exercise). The first identity can be generalized under the assumption
supn⩾1E(|Mn −Mn−1| | Fn−1) ⩽ K < ∞ a.s.

13.3 Martingale Convergence Theorem

Let (Mn,Fn)n⩾0 be a submartingale and a < b. We define N0 = −1 and

N1 = inf{i > N0 | Mi ⩽ a}, N2 = inf{i > N1 | Mi ⩾ b},
N3 = inf{i > N2 | Mi ⩽ a}, N4 = inf{i > N3 | Mi ⩾ b},

In general, N2k−1 = inf{i > N2k−2 | Mi ⩽ a}, N2k = inf{i > N2k−1 | Mi ⩾ b} for k ⩾ 1.

First we claim that.
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Lemma 13.10. For i ⩾ 1, Ni is a stopping time w.r.t. the filtration (Fn)n⩾0.

Proof. The proof is by induction. Clearly, N1 is a stopping time. SupposeN1, . . . , Ni−1 are stopping
time. If i is even, then

{Ni ⩽ n} =

n⋃
j=1

{Ni−1 = j − 1} ∩ {j ⩽ Ni ⩽ n} =

n−1⋃
j=1

{Ni−1 = j − 1} ∩
n⋃

k=j

{Mk ⩾ b} ∈ Fn.

Similarly, when i is odd,

{Ni ⩽ n} =
n⋃

j=1

{Ni−1 = j − 1} ∩ {j ⩽ Ni ⩽ n} =
n−1⋃
j=1

{Ni−1 = j − 1} ∩
n⋃

k=j

{Mk ⩽ a} ∈ Fn. ■

Define the upcrossing random variable

Un(a, b) = sup{k | N2k ⩽ n}.

For fixed m ⩾ 1 and any k ⩾ 1,

{N2k−1 < m ⩽ N2k} = {N2k−1 ⩽ m− 1 and N2k > m− 1} ∈ Fm−1.

Thus Hn = ∪k⩾1{N2k−1 < n ⩽ N2k}, n ⩾ 0 is a predictable sequence and

(H ·M)n ⩾ (b− a)Un(a, b).

Theorem 13.11 (Upcrossing Inequality). For any a < b and any submartingale (Mn,Fn)n⩾0,
we have,

(b− a)E(Un(a, b)) ⩽ E(Mn − a)+ − E(M0 − a)+ for all n ⩾ 1.

Proof. Define Yn := ϕ(Mn) = (Mn − a)+ + a, n ⩾ 0 where ϕ(x) = (x− a)+ + a is a non-decreasing
convex function. By conditional Jensen’s inequality, we have

E(Yn+1 | Fn) = E(ϕ(Mn+1) | Fn) ⩾ ϕ(E(Mn+1 | Fn)) ⩾ ϕ(Mn) = Yn.

Thus (Yn,Fn)n⩾0 is a submartingale. Moreover, upcrossings for Mn and Yn over the interval [a, b]
are the same. Thus (H · Y )n ⩾ (b− a)Un(a, b) implies that

(b− a)E(Un(a, b)) ⩽ E(H · Y )n.

Now, we have Yn−Y0 = (H ·Y )n+((1−H) ·Y )n and E((1−H) ·Y )n ⩾ E((1−H) ·Y )0 = 0. Thus,

E(H · Y )n ⩽ E(Yn − Y0). ■
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Theorem 13.12 (Martingale Convergence Theorem (MGCT)). If (Mn,Fn)n⩾0 is a sub-
martingale with supnEM+

n < ∞, then

Mn → M∞ a.s.

for some M∞ ∈ L1(F).

Proof. Let K = supnEM+
n . Fix a < b. We have

(b− a)EUn(a, b) ⩽ E(Mn − a)+ ⩽ EM+
n + a ⩽ K + a.

Note that, Un(a, b) ↑ U(a, b) as n → ∞ where U(a, b) is the total number of upcrossings of the
interval [a, b]. Thus, EU(a, b) < ∞ and in particular, U(a, b) < ∞ a.s. Thus,

P (∪a<b,a,b∈Q {U(a, b) = ∞}) = 0,

which implies that

P (lim infMn = lim supMn) = 1− P (lim infMn < lim supMn)

= 1− P (∪a<b,a,b∈Q {lim infMn < a < b < lim supMn})
= 1− P (∪a<b,a,b∈Q {U(a, b) = ∞}) = 1.

In Particular,
Mn → M∞ a.s.

for some r.v. M∞. Now M+
n → M+

∞ and M−
n → M−

∞ a.s. By Fatou’s Lemma, we have

EM+
∞ = E(lim infM+

n ) ⩽ lim inf EM+
n , EM−

∞ = E(lim infM−
n ) ⩽ lim inf EM−

n .

Moreover,
EM−

n = E(M+
n −Mn) = EM+

n − EMn ⩽ supEM+
n − EM0

which implies that EM+
∞,EM−

∞ < ∞. ■

Note that, for a submartingale (Xn,Fn)n⩾1

sup
n
EX+

n < ∞ ⇔ sup
n
E |Xn| < ∞.

Corollary 13.13. A positive super-martingale converges a.s. to an integrable r.v.

Proof. If (Xn)n⩾0 is a positive super-martingale, then (−Xn)n⩾0 is a negative sub-martingale, i.e.,
supnE((−Xn)

+) = 0 < ∞ and thus we can apply MGCT to −Xn to get the desired result. ■
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