MATH 561: THEORY OF PROBABILITY (SPRING 2023) WEEK 13

Wald’s Identities

13.1 Doob’s martingale transform

Definition 13.1 (Martingale difference sequence). Let (F,,) be a filtration and (Ay) be an
adapted sequence of random variables to (Fy). Then (A,) is a Martingale difference sequence
if it satisfies 1) A, € LY(F,), 2) B(Any1 | Fn) =0 for alln > 0.

Observe that it is possible to give an equivalent definition of Martingale in term of Martingale
difference sequence as follows: Let (F,,) be a filtration and (A,,) be a Martingale difference sequence.
Then the sequence (M,,) defined by

n
i=0
is a Martingale. Notice that if 2) is changed to E(Ap4+1 | Fn) = 0 (E(An41 | Fn) < 0), then (M,)
is a sub-martingale (super-martingale).
Theorem 13.2 (Doob’s martingale transform). Suppose (M, Fn)n>0 iS a martingale and
(Hp, Fn)n>o0 is predictable. Define
n
An:Mn_Mn—ly (HM)n:ZHzAZ
i=1
forn > 1. Then ((H - M)y, Fy) is a martingale whenever I |(H - M),| < oo for all n.

Proof. Since (H - M)y41 — (H - M),, = Hpy1 - Apy1, we have for n > 0, E(Hp41An41 | Fn) =
Hn+1 E(An+1 ‘ fn) - 0 .

Observe that if H, > 0, then (M,,) is a sub-martingale (super-martingale) implies (H - M), is a
sub-martingale (super-martingale).

Theorem 13.3. If (M,, F,) is a martingale (sub/super-martingale) and T is a stopping time with
respect to a filtration (F,), then
Wy = Mupr,n 20

is a (Fn)—martingale (sub/super-martingale).

Proof. Notice that

nAT n
Mapr = A=Y Ajlrsi,
i=1 i=1
In particular, E(M,r) = E(Mp) for all n > 0. |
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Note that, M7 —2 Mp as n — oo when Mt is well-defined a.s.

Example 13.4. Let (X;) be an iid sequence of random variable which is identically distributed to
simple random walk on Z. Let M,, = S, = > " | X;. Then E(My) = 0. Let T = inf{n | S, > 1}.
Then

Mp = Sp =1 yields E(Myp) =1 # E(M).

This ezample shows that it is not always true that E(Mp) = im E(M,ar) = E(lim M,a7) = E(M7).

Notice that if T is bounded by some k, then n AT =T for n > k and Myar7 = Mp,n > k.

13.2 Wald’s Identities

Theorem 13.5 (Wald’s first identity). Let (X,,,n > 1) be a sequence of mean zero independent
r.0.s with sup;>1 £ |X;| < co. Consider the martingale

M,=S,=X1+Xo+ -+ X,,, Fpni=0(X1,....,Xpn), n=0.
Let T be a (Fp,n > 0) stopping time with ET < co. Then
E(M7) = E(My) = 0.
In particular, if X;’s are i.i.d. r.v.s withlE Xy = p and T is a (0(X1,...,Xpn),n = 0) stopping time

with BT < oo, then
ESr=pET.

Proof. We have Mpa, = > iy Xilps; — My as. as n — oo. Moreover E(Mrppy,) = 0 for n > 0.
By the fact that X; L Fj_1, Lrs; = I7>;—1 € F;—1 we have

(0.) oo o0
E> X Irsi = B(IXillrs) = Y BIX| - E(lrs) < si1>111)E 1X;| - ET < oo.
i=1 i=1 i=1 z

Using DCT with |Mpa,| <oy |Xi| - Irs; for all n > 0 we get the result. [ ]

Theorem 13.6 (Wald’s second identity). Let (X,,,n > 1) be a sequence of mean zero indepen-
dent 7.v.s with sup;~, E X? < oo. Consider the martingale

n
M,=8}-Y EX}, Fp=0(X1,....Xn), n>0
=1

where Sy, = X1+ Xo+ -+ X, Let T be a (Fn,n = 0) stopping time with ET < oco. Then
E(Mr) = E(M,) = 0.
In particular, if X;’s are i.i.d. r.v.s with E X, = 0, Var(X1) = 0% and T is a (o(X1,...,Xp),n = 0)

stopping time with BT < oo, then
E S% =d’ET.
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Proof. Let 02 =E X? for i > 1. We have

TAn
EMran =ES7,, —EY o} =0foralln>0.
=1

Now

n ()
ST/\n = E Xz’]ngi — ST = E XZ']IT>¢ a.s. as n — o9,
=1 =1

X; is orthogonal to F;_1 and 1ps; € F;—1 for ¢ > 1. Thus
E(Xilrzi - Xjlr=;) =0

for all i # j and for 0 < n < ©

m
sup [|Szam — Seanll3 = sup S [ XiLrsil 3

m>=n m>2n .

i=n-+1
=sup ¥ B(X7lrs) =Y EX? E(lrs;) <supEX7 ) B(lrs).
m2n >n >n il >n

Thus, (S7an) is L*- Cauchy and IESTML — IBST. Similar argument and DCT shows that
E ZT/\" 2 5 EY.] 02 Thus we have the result. [ ]

Theorem 13.7 (Wald’s third identity). Let (X,,n > 1) be a sequence of i.i.d. r.v.s with
E(eX1) = ¢(0) < 0o. Let T be a (0(X1, Xa, ..., X,))—stopping time. If T is a.s. bounded or

P(0)" - €% gy, < K for alln >0
then
E (6(6) 7" = 1.

Proof. Since M,, := ¢(0)™™ - €% is a martingale w.r.t. the filtration F;, := o(X1,..., X,),n > 0,
we have E(Mpp,) = E(Mpao) = 1. The results follows in the first case by the fact that 7' < K
a.s. implies T'A K = T and in the second case by DCT. |
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We provide some examples to illustrate how to use Wald’s identities.

Example 13.8 (SSRW (Simple Symmetric Random Walk) on Z). Let (X,) be a sequence
of i.i.d. r.v.s with P(X1 = +1) = P(X; = —1) = 1/2,EX; = 0,EX? = 1. Define Sy = 0,5, :=
Sn-1+ Xp,n>=1. Let a,b € Z with a,b > 0. Define

T=inf{n >0 S, = —a or S, = b}.

Then ET < oo, by using second moment martingale to get (T An) = ]ES%M < a® + b? for all
n = 0.

Moreover, by Wald’s first identity we have IE(St) =0, i.e.,
aIP(ST = —a) = bIP(ST = b) = b(l — IP(ST = a))

So b
a
P(S7 = —a) = P(Sr=b) = .
(= —a)= Ty P =0 =3
Example 13.9 (SRW (Simple Random Walk) with drift). Fiz p € (0,1),p # 1/2. Let
(Xy) be a sequence of i.i.d. r.v.s with P(X; = +1) = p,P(X; = -1)=q¢=1—-p,pu:=EX; =
2p — 1,E X2 = 1. Define So = 0,8, := Sp_1+ Xn,n > 1. Let a,b € Z with a,b > 0. Define

T=inf{n >0 S, = —a or S, = b}.
By Wald’s first identity, we have
E(TAn)=p "ESran < |p|™! - (a+b) for alln >0

and thus ET < oo. Choose 0 = log(q/p) € R so that ¢ = q/p and Ee*1 = 1. We also have
eeSn]l{T%} < et for all n > 0. By Wald’s Third Identity we have

1= <q>aIP(ST = —a)+ (Z)b (1-P(Sy = —a)).

b

Thus, we have

B pbqa _ qa+b

atb _ . ba
P(Sr = —a) = 5 oy ond P(Sr =) = O

- paer _ qa+b'

Using Wald’s third identity with general # € R, one can calculate the probabilities P(T =
k),k > 0 (see the homework exercise). The first identity can be generalized under the assumption
sup,>1 E(|My — Mp_q] | Foo1) < K < 00 as.

13.3 Martingale Convergence Theorem

Let (M, Fn)n>0 be a submartingale and a < b. We define Ny = —1 and

Ny = inf{i > No | M; < a}, Ny = inf{i > Ny | M; > b},
N3 = inf{i > No ‘ M; < a}, Ny = inf{i > Nj | M; > b},
In general, Nox_1 = inf{i > Nop_o | M; < a},  Nox =inf{i > Nop_1 | M; > b} for k > 1.

First we claim that.
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b

L .A
a—J s CAN

Lemma 13.10. Fori > 1, N; is a stopping time w.r.t. the filtration (Fpn)n>0-

Proof. The proof is by induction. Clearly, N; is a stopping time. Suppose Ny, ..., N;_1 are stopping
time. If ¢ is even, then

n n—1
(Ni<ny=J{Nia=j-1n{i<Ni<n}=J{Nia1=j-1}n U{Mk b} € F.
j=1 j=1 k=j

Similarly, when ¢ is odd,

{(Ni<n}=J{Nici=j-1}n{j <Ni < n}—U{N 1—y—1}ﬂU{Mk<a}efn. n

j=1 k=j
Define the upcrossing random variable
Un(a,b) = sup{k | Noy < n}.
For fixed m > 1 and any k >
{Nok_1 <m < Nop} ={Nog—1 <m—1and Nop >m — 1} € Fpp_q.
Thus H,, = Ug>1{Nag—1 <n < Noi},n > 0 is a predictable sequence and
(H-M), > (b—a)Uy,(a,b).

Theorem 13.11 (Upcrossing Inequality). For any a < b and any submartingale (M, Fr)n>0,

we have,
(b—a)E(Uy(a,b)) < E(M, —a)t —E(My —a)™ for alln > 1.

Proof. Define Y,, := ¢(M,,) = (M, —a)™ + a,n > 0 where ¢(z) = (x — a)* + a is a non-decreasing
convex function. By conditional Jensen’s inequality, we have

IED(Yn+1 ’ Jtn) = E(¢(Mn+1) ‘ ]:n) > ¢(E(Mn+1 ‘ -7:71)) 2 ¢(Mn) =Y.

Thus (Y, Fn)n>o0 is a submartingale. Moreover, upcrossings for M,, and Y, over the interval [a, b]
are the same. Thus (H -Y), > (b — a)U,(a,b) implies that

(b—a)E(Uy(a,b)) <E(H-Y),.

Now, we have V,, - Yo = (H-Y ), +((1—H) - Y),and E(1—-H)-Y), 2 E(1-H)-Y)o = 0. Thus,
E(H Y ) < B(Y, — o). .
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Theorem 13.12 (Martingale Convergence Theorem (MGCT)). If (M, Fn)n>0 S a sub-
martingale with sup,, E M, < oo, then

M, - My a.s.

for some My, € L*(F).

Proof. Let K = sup,, E M,". Fix a < b. We have
(b—a)EU,(a,b) <EM, —a)" <EM,+a< K +a.

Note that, U,(a,b) T U(a,b) as n — oo where U(a,b) is the total number of upcrossings of the
interval [a,b]. Thus, EU(a,b) < oo and in particular, U(a,b) < oo a.s. Thus,

P (Ua<b,a,b€Q {U(a,b) = o0}) =0,
which implies that

P (liminf M,, = limsup M,,) = 1 — P (lim inf M,, < limsup M,,)
=1—P (Ug<papeq {liminf M, < a < b < limsup M,})
=1-P (Ua<b7a?b€Q {U(a, b) = OO}) =1.

In Particular,
M, — My, a.s.

for some r.v. M. Now M;" — M and M, — ML a.s. By Fatou’s Lemma, we have
E M} = E(liminf M,") <liminf EM,", EM_ = E(liminf M, ) < liminf E M, .

Moreover,
E M, =E(M,} - M,) =EM,; —EM, <supEM,” — E M,

which implies that E M1, E M, < oo. [ |

Note that, for a submartingale (X,,, 5y )n>1

supE X, < 0o & supE|X,| < .
n n
Corollary 13.13. A positive super-martingale converges a.s. to an integrable r.v.

Proof. 1f (X,,)n>0 is a positive super-martingale, then (—X,,),>0 is a negative sub-martingale, i.e.,
sup,, E((—X,)") = 0 < oo and thus we can apply MGCT to —X,, to get the desired result. [ |
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