6.1 Kolmogorov’s maximal inequality

Theorem 6.1 (Kolmogorov’s Maximal Inequality). Let X_1, \ldots, X_n be independent random variables with $E X_i = 0$, $E X_i^2 < \infty$ for all $1 \leq i \leq n$. Define $S_n = X_1 + \cdots + X_n$. Then

$$P\left(\max_{1 \leq k \leq n} |S_k| \geq a \right) \leq \frac{E S_n^2}{a^2}$$

for any $a > 0$.

Proof Sketch: Let $A_i = \{|S_1| < a, |S_2| < a, \ldots, |S_{i-1}| < a, |S_i| \geq a\}$, $i = 1, 2, \ldots, n$. Then $A_i \cap A_j = \emptyset$ for all $i \neq j$. Notice that $P\left(\max_{1 \leq k \leq n} |S_k| \geq a \right) = \sum_{i=1}^n P(|S_i| \geq a, \max_{1 \leq k < i} |S_k| < a)$. Then

$$E S_n^2 \geq \sum_{i=1}^n E S_i^2 1_{A_i} = \sum_{i=1}^n E(S_i^2 + 2S_i(S_n - S_i) + (S_n - S_i)^2) 1_{A_i}$$

$$\geq \sum_{i=1}^n (a^2 P(A_i) + 2 E S_i 1_{A_i}(S_n - S_i)) = a^2 P\left(\max_{1 \leq k \leq n} |S_k| \geq a \right).$$

In the last line we used the fact that $S_i 1_{A_i}$ is independent of X_{i+1}, \ldots, X_n. □

Theorem 6.2 (Basic L^2-convergence). Let X_1, X_2, \cdots be independent r.v.’s with $E(X_i) = 0$ and $\sum_{i=1}^\infty \text{Var}(X_i) < \infty$. Then $S_n = \sum_{i=1}^n X_i$ converges in L^2 and a.s.

Proof. To see L^2-convergence, we will prove that $(S_n)_{n \geq 1}$ is Cauchy in L^2. It is enough to show that $||S_n - S_m||_2 < \varepsilon$ for all $n, m \geq N(\varepsilon)$. Suppose $n > m$, then we obtain

$$||S_n - S_m||_2^2 = E((S_n - S_m)^2) = E((X_{m+1} + X_{m+2} + \cdots + X_n)^2)$$

$$= \text{Var}(X_{m+1} + X_{m+2} + \cdots + X_n)$$

$$= \text{Var}(X_{m+1}) + \text{Var}(X_{m+2}) + \cdots + \text{Var}(X_n).$$

For any $\varepsilon > 0$, there exists $N = N(\varepsilon)$ with $\sum_{i=N}^{\infty} \text{Var}(X_i) < \varepsilon^2$, thus we have $||S_n - S_m||_2 < \varepsilon$ for all $n, m \geq N(\varepsilon)$ which implies that $(S_n)_{n \geq 1}$ is a Cauchy sequence in L^2 and therefore converges in L^2. Now, it remains to show a.s. convergence. In other words, we need to show $P(S_n \text{ converges}) = 1$. Define $M_N = \max\{|S_n - S_m| : n, m \geq N\}$, then clearly M_N is decreasing. Indeed, it is enough to
show that $M_N \overset{p}{\to} 0$ as $N \to \infty$. Let $\varepsilon > 0$ be given. Then,

$$P(M_N > \varepsilon) = P(\max_{n,m \geq N} |S_n - S_m| > \varepsilon) \leq P(\max_{k \geq N} |S_{N+k} - S_N| > \varepsilon/2)$$

$$= \lim_{n \to \infty} P(\max_{1 \leq k \leq n} |S_{N+k} - S_N| > \varepsilon/2)$$

$$\leq \lim_{n \to \infty} \frac{\text{Var}(S_{N+n} - S_N)}{(\varepsilon/2)^2}$$

$$= \lim_{n \to \infty} \left(\frac{2}{\varepsilon}\right)^2 \sum_{i=N+1}^{N+n} \text{Var}(X_i) = \left(\frac{2}{\varepsilon}\right)^2 \sum_{i \geq N} \text{Var}(X_i),$$

where the second inequality follows by Kolmogorov’s Maximal inequality. Hence, $\lim_{N \to \infty} P(M_N > \varepsilon) = 0$ or $M_N \overset{p}{\to} 0$, thus we obtain $M_N \to 0$ a.s. Therefore, $P((S_n)_{n \geq 1} \text{ is Cauchy}) = 1$. ■

Using basic L^2-convergence theorem, we can give a simple proof of SLLN under finite second moment. Let X_1, X_2, \ldots be i.i.d. with $EX_1 = 0$ and $\text{Var}(X_1) < \infty$. By basic L^2-convergence theorem, we have $\sum_{k=1}^{n} X_k/k$ converges a.s as $n \to \infty$. Now, using Kronecker’s lemma (stated and proved below), we have $n^{-1} \sum_{k=1}^{n} X_k \to 0$ a.s.

Lemma 6.3 (Kronecker’s lemma). Let $a_n \uparrow \infty$ and $\sum_{i=1}^{n} x_i/a_i$ converges. Then

$$\frac{1}{a_n} \sum_{i=1}^{n} x_i \to 0$$

Proof. We have $b_n := \sum_{i=1}^{n} x_i/a_i \to b$, for some $b \in \mathbb{R}$, as $n \to \infty$. Moreover, $x_n = a_n(b_n - b_{n-1})$ so

$$\frac{1}{a_n} \sum_{i=1}^{n} x_i = \frac{1}{a_n} \sum_{i=1}^{n} (a_i b_i - a_i b_{i-1}) = \frac{1}{a_n} (a_n b_n + \sum_{i=1}^{n-1} (a_i - a_{i+1})b_i) = b_n - \frac{1}{a_n} \sum_{i=1}^{n-1} (a_{i+1} - a_i)b_i.$$

Let $d_i = a_{i+1} - a_i$. We know that $b_n \to b$ and thus

$$\frac{\sum_{i=1}^{n-1} d_i b_i}{\sum_{i=1}^{n-1} d_i} - b = \frac{\sum_{i=1}^{n-1} d_i (b_i - b)}{\sum_{i=1}^{n-1} d_i} \to 0$$

as $n \to \infty$, since $d_i \geq 0$ and $\sum_{i=1}^{\infty} d_i = \infty$. So this proves that $\frac{1}{a_n} \sum_{i=1}^{n} x_i \to 0$ completing the proof. ■

6.2 Applications of SLLN

Theorem 6.4 (Renewal Theorem). Let X_1, X_2, \ldots be a sequence of i.i.d. r.v.’s with $X_i \geq 0$, $EX_1 = \mu > 0$. Then

$$\frac{N_t}{t} \overset{a.s.}{\to} \frac{1}{\mu}$$

where $N_t = \sup\{n \mid X_1 + X_2 + \cdots + X_n \leq t\}$.

Proof Sketch: By SLLN, if \(S_n = X_1 + X_2 + \cdots + X_n \), then \(\frac{S_n}{n} \xrightarrow{a.s.} \mu \) as \(n \to \infty \). We observe that

- \(N_t \uparrow \infty \) a.s. as \(t \to \infty \). (\(\{N_t \geq n\} = \{X_1 + X_2 + \cdots + X_n \leq t\} \)).
- \(\Pr \left(\frac{S_n}{n} \xrightarrow{n \to \infty} \mu, N_t \xrightarrow{t \to \infty} \infty \right) = 1 \) or \(\Pr \left(\frac{S_{N_t}}{N_t} \xrightarrow{N_t \to \infty} \mu, \frac{S_{N_t+1}}{N_t+1} \xrightarrow{t \to \infty} \mu \right) = 1 \).

By definition, we have \(S_{N_t} \leq t < S_{N_t+1} \) so that

\[
\frac{S_{N_t}}{N_t} \leq \frac{t}{N_t} < \frac{S_{N_t+1}}{N_t+1} = \frac{S_{N_t+1}}{N_t+1} \cdot \frac{N_t+1}{N_t}.
\]

Both upper and lower bounds converges to \(\mu \) a.s. and this completes the proof.

Definition 6.5 (Empirical Distribution). Let \(X_1, X_2, \cdots \) be a sequence of i.i.d. r.v.'s with distribution function \(F \). Define

\[
F_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathds{1}_{X_i \leq x} \text{ for all } x \in \mathbb{R}.
\]

\(F_n \) is called the empirical distribution function. By SLLN, \(F_n(x) \xrightarrow{a.s.} F(x) \), for each \(x \in \mathbb{R} \).

Theorem 6.6 (Glivenko-Cantelli Lemma). We have

\[
\|F_n - F\|_{\infty} = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \xrightarrow{a.s.} 0.
\]

Proof Sketch: Fix \(k \geq 1 \), define

\[
x_{j,k} = F^{-1} \left(\frac{j}{k} \right) = \inf \left\{ x : F(x) \geq \frac{j}{k} \right\}, 1 \leq j < k.
\]

Define \(x_{0,k} = -\infty, x_{k,k} = \infty \). By SLLN,

\[
\Pr \left(F_n(x_{j,k}) \xrightarrow{a.s.} F(x_{j,k}) \right) \forall 0 \leq j \leq k) = 1.
\]

Similarly,

\[
F_n(x-) = \frac{1}{n} \sum_{i=1}^{n} \mathds{1}_{X_i < x} \xrightarrow{a.s.} F(x-).
\]

Thus

\[
\Pr \left(F_n(x_{j,k}^-) - F(x_{j,k}^-) \to 0, F_n(x_{j,k}) - F(x_{j,k}) \to 0 \forall 0 \leq j \leq k \right) = 1.
\]

Define

\[
\Delta_k^{(n)} = \max_{0 \leq j \leq k} \left\{ |F_n(x_{j,k}) - F(x_{j,k})|, |F_n(x_{j,k}^-) - F(x_{j,k}^-)| \right\}.
\]

Take \(x \in [x_{j,k}, x_{j+1,k}] \). Then,

\[
F_n(x_{j,k}) \leq F_n(x) \leq F_n(x_{j+1,k}) \implies F_n(x_{j,k}) - F(x) \leq F_n(x) - F(x) \leq F_n(x_{j+1,k}^-) - F(x).
\]

Since

\[
|F_n(x_{j+1,k}^-) - F(x)| \leq |F_n(x_{j+1,k}^-) - F(x_{j+1,k}^-)| + |F(x_{j+1,k}^-) - F(x)|
\]

\[
\leq \Delta_k^{(n)} + \frac{1}{k}
\]
and
\[|F_n(x_{j,k}) - F(x)| \leq |F_n(x_{j,k}) - F(x_{j,k})| + |F(x_{j,k}) - F(x)| \leq \Delta^{(n)}_k + \frac{1}{k}, \]
we have \(\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \leq \Delta^{(n)}_k + \frac{1}{k} \). Thus
\[P \left(\limsup_n \|F_n - F\|_{\infty} \leq \frac{1}{k} \right) = 1 \quad \forall k \]
\[\Rightarrow P \left(\limsup_n \|F_n - F\|_{\infty} \leq \frac{1}{k} \right) = 1, \]
\[\Rightarrow P \left(\limsup_n \|F_n - F\|_{\infty} = 0 \right) = 1. \]

\[\blacksquare \]

Remark. See "Bootstrap" in statistics for applications of Glivenko-Cantelli Lemma.

6.3 Tail events and Kolmogorov’s 3-Series Theorem

Definition 6.7 (Tail \(\sigma \)-field). Let \(X_1, X_2, \ldots \) be independent r.v.s. The \(\sigma \)-field
\[\mathcal{T} = \bigcap_{k=1}^{\infty} \sigma(X_k, X_{k+1}, \ldots) \]
is called the tail \(\sigma \)-field.

Example 6.8. We have \(\{ \text{lim } X_n \text{ exists} \} \in \mathcal{T} \), \(\{ \limsup_n (X_1 + \ldots + X_n)/n \leq a \} \in \mathcal{T} \). However, the event \(\{ \limsup_n (X_1 + \ldots + X_n) \leq a \} \notin \mathcal{T} \).

Theorem 6.9 (Kolmogorov’s 0-1 Law). For all \(A \in \mathcal{T} \), \(P(A) \in \{0, 1\} \).

Proof. We will prove that \(\mathcal{T} \perp \mathcal{T} \) (the tail \(\sigma \)-field is independent of itself). Then for all \(A \in \mathcal{T} \),
\[P(A) = P(A \cap A) = P(A) \cdot P(A) \]
which implies \(P(A) \in \{0, 1\} \). The proof is in 4 steps.

Step 1. \(\sigma(X_1, \ldots, X_{k-1}) \perp \sigma(X_{l+1}, X_{l+2}, \ldots) \) for all \(l \geq k \), since \(X_i \)'s are independent.

Step 2. In particular, \(\sigma(X_1, \ldots, X_{k-1}) \perp \mathcal{T} \) for all \(k \geq 2 \).

Step 3. \(\sigma(X_1, \ldots) \perp \mathcal{T} \).

Step 4. \(\mathcal{T} \perp \mathcal{T} \).

Proof of step 1: Clearly \(\sigma(X_1, \ldots, X_{k-1}) \perp \sigma(X_l, \ldots, X_{l+j}) \) for all \(l \geq k, j \geq 0 \), which implies that
\[\sigma(X_1, \ldots, X_{k-1}) \perp \bigcup_{j=0}^{\infty} \sigma(X_l, \ldots, X_{l+j}). \]
By $\pi - \lambda$ theorem, $\sigma(X_1, \ldots, X_{k-1}) \perp \sigma(\bigcup_{j=0}^{\infty}\sigma(X_{i}, \ldots, X_{i+j})) = \sigma(X_{i}, X_{i+1}, \ldots)$.

Proof of step 2: Note that $\mathcal{F} \perp \mathcal{G}$ implies that any sub σ-field of \mathcal{F} is independent of \mathcal{G}. Clearly $\mathcal{T} \subseteq \sigma(X_k, X_{k+1}, \ldots)$. So by (*), $\sigma(X_1, \ldots, X_{k-1}) \perp \mathcal{T}$.

Proof of step 3: We have $\bigcup_{k \geq 1} \sigma(X_1, \ldots, X_{k-1}) \perp \mathcal{T}$. Thus by $\pi - \lambda$ theorem, $\sigma(X_1, \ldots) \perp \mathcal{T}$.

Proof of step 4: Clearly $\mathcal{T} \subseteq \sigma(X_1, X_2, \ldots)$. So by (*), we have the proof. \hfill \blacksquare

Theorem 6.10 (Kolmogorov’s 3-series Theorem). Let X_1, X_2, \ldots be independent. Fix $b > 0$. Consider the three deterministic series:

\[
\begin{align*}
(i) \quad & \sum_{i=1}^{n} P(|X_i| > b), \\
(ii) \quad & \sum_{i=1}^{n} E(X_i \mathbb{1}_{|X_i| \leq b}), \\
(iii) \quad & \sum_{i=1}^{n} \text{Var}(X_i \mathbb{1}_{|X_i| \leq b}).
\end{align*}
\]

Then

\[
\sum_{i=1}^{n} X_i \text{ converges a.s. if and only if } (i), (ii), (iii) \text{ converge.}
\]

Proof. We will first prove the if part. Write $X_i = U_i + v_i + W_i$, where

\[
U_i := X_i \mathbb{1}_{|X_i| > b}, \quad v_i := E X_i \mathbb{1}_{|X_i| \leq b}, \quad \text{and } W_i := X_i \mathbb{1}_{|X_i| \leq b} - v_i.
\]

By convergence of (ii), we have $\sum_{i \geq 1} v_i < \infty$. We will prove that both $\lim_{n \to \infty} \sum_{i=1}^{n} U_i$ and $\lim_{n \to \infty} \sum_{i=1}^{n} W_i$ exists a.s. By Borel-Cantelli Lemma and convergence of series (i), we have $P(|X_i| > b \text{ i.o.}) = 0$ which implies that $\lim_{n \to \infty} \sum_{i=1}^{n} U_i$ exists a.s. Convergence of (iii) and Basic L^2 convergence implies $\lim_{n \to \infty} \sum_{i=1}^{n} W_i$ exists a.s.

For the only if part, we need to use Central Limit Theorem, which states that for a sequence of iid mean zero, variance one rvs X_1, X_2, \ldots, the sequence $n^{-1/2}S_n$ converges in distribution to $N(0,1)$ and will be proved later. \hfill \blacksquare

Another application of Central Limit Theorem and truncation + subsequence technique is the following result, which will not be proved here. The crucial idea is that S_n/\sqrt{n} converges in distribution to $N(0,1)$ and for a rv $X \sim N(0,1)$ we have $P(X \geq t) = P(X \leq -t) \leq e^{-t^2/2}, t > 0$.

Theorem 6.11 (Law of Iterated Logarithms (LIL)). Let X_1, X_2, \ldots be i.i.d. with mean 0, $\text{Var}(X_1) = 1$. Define $S_n = \sum_{i=1}^{n} X_i$. Then

\[
\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1 \text{ a.s.}
\]

\[
\liminf_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = -1 \text{ a.s.}
\]

A sequence $\{t_n\}_{n \geq 1}$ is subadditive, if $t_{m+n} \leq t_m + t_n$ for all $m, n \geq 1$. The following lemma for a deterministic sequence can be generalize to random sequences to give another proof of SLLN.

Theorem 6.12 (Subadditive limit theorem). If $\{t_n\}_{n \geq 1}$ is subadditive, then

\[
\frac{t_n}{n} \to \inf_{m \geq 1} \frac{t_m}{m} \text{ as } n \to \infty.
\]
Proof. Clearly, \(\liminf_n t_n/n \geq \inf_{m \geq 1} t_m/m \). Note that, \(t_{mn+k} \leq nt_m + tk \) for \(m, n, k \geq 1 \). Thus
\[
\frac{t_{mn+k}}{mn+k} \leq \frac{nt_m + tk}{mn+k} = \frac{\frac{t_m}{m} + \frac{tk}{mn}}{1 + \frac{k}{m}}
\]
Fix \(m \geq 1 \) and \(0 \leq k < m \), then
\[
\limsup_n \frac{t_{mn+k}}{mn+k} \leq \frac{t_m}{m}.
\]
Thus,
\[
\limsup_n \frac{t_n}{n} \leq \frac{t_m}{m}.
\]
Since \(m \) is arbitrary, we have
\[
\limsup_{n \to \infty} \frac{t_n}{n} \leq \inf_{m \geq 1} \frac{t_m}{m}.
\]

Corollary 6.13. Let \(X_1, X_2, \ldots \) be i.i.d. r.v.s. Define \(S_n = X_1 + X_2 + \cdots + X_n, n \geq 1 \). Then,
\[
\kappa(a) := \lim_{n \to \infty} -\frac{1}{n} \log \mathbb{P}(S_n \geq a)
\]
exists and is non-negative (need not be finite).

Proof. We use the fact that \(\mathbb{P}(S_{n+m} \geq (n+m)a) \geq \mathbb{P}(S_m \geq ma, S_{n+m} - S_m \geq na) \geq \mathbb{P}(S_m \geq ma) \cdot \mathbb{P}(S_n \geq na) \) and thus the sequence \(t_n := -\log \mathbb{P}(S_n \geq a) \geq 0 \) is subadditive.

In the next lecture, we will study conditions under which \(\kappa(a) \) is positive and finite. The random version of the subadditive limit theorem is stated below without proof.

Theorem 6.14 (Subadditive ergodic theorem). Let \(\{X_{m,n} \mid n > m \geq 0\} \) be a collection of rvs indexed by integers \(n > m \geq 0 \), such that
\[
X_{0,n} \leq X_{0,m} + X_{m,n} \text{ a.s. for } 0 < m < n.
\]
Assume that
\begin{enumerate}
\item The joint distributions of \(\{X_{m+1,m+k+1}, k \geq 1\} \) are the same as those of \(\{X_{m,m+k}, k \geq 1\} \) for each \(m \geq 0 \),
\item For each \(k \geq 1 \), \(\{X_{nk,(n+1)k}, n \geq 1\} \) is a stationary process and
\item For each \(n \), \(\mathbb{E}|X_{n,n}| < \infty \) and \(\mathbb{E}X_{0,n} \geq -cn \) for some constant \(c \).
\end{enumerate}
Then, \(\frac{1}{n}X_{0,n} \) converges a.s. and in \(L^1 \) to a r.v. \(X \) and \(\mathbb{E}X \in [-c, \infty) \). Moreover, if the processes in (b) are ergodic, then \(X \) is a constant a.s.