Jointly distributed random variables

Consider collections of 2 or more random variables X_1, X_2, \ldots, X_n.
Interested in modeling relationships between them as well.

Examples:
- X_1 = price of stock 1, X_2 = price of stock 2, etc.
- X_1 = price today, X_2 = price yesterday, etc.
- X_1 = expenditures on food, X_2 = expenditures on housing, etc.
- X_1 = cholesterol level, X_2 = blood pressure, etc.
- X_1 = rainfall in IL, X_2 = rainfall in IN, etc.

Most more advanced
- statistical topics (time series, multivariate analysis, multiple linear regression, factor models, etc) and
- probability topics (Markov chains, stochastic processes, etc)
involve collections of random variables.
Jointly distributed random variables

Focus on: Two random variables X, Y. All probability questions about X and Y can be answered in terms of their joint c.d.f.

Joint cumulative distribution function (c.d.f.):

$$F(a, b) = P(X \leq a, Y \leq b), \quad -\infty < a, b < \infty.$$

For example: F carries info about X, Y individually: e.g.

$$F_X(a) =$$

But also: e.g.

$$P(X > a, Y > b) =$$

$$P(a_1 < X \leq a_2, b_1 < Y \leq b_2) =$$

Two broad classes of random variables

1. Both X and Y are discrete: characterized through *joint probability mass function* (p.m.f.)

 $$p(x, y) = P(X = x, Y = y).$$

 For example, $p_X(x) = P(X = x) = \sum_y p(x, y)$, etc.

2. X and Y are jointly continuous: there is a non-negative function $f(x, y)$, called *joint probability density function* (p.d.f.), such that, for any set C in the two-dimensional plane,

 $$P((X, Y) \in C) = \int\int_{(x,y) \in C} f(x, y)\,dx\,dy.$$

Next: A number of notes for the jointly continuous case.
Jointly distributed random variables

Note 1: $\int \int_{(x,y) \in C} f(x,y) \, dx \, dy$ is the volume under the surface $f(x,y)$ above the region C. In particular, when $f \equiv 1$,

$$\int \int_{(x,y) \in C} \, dx \, dy = \text{Area}(C).$$

Note 2: With $C = A \times B = \{(x,y) : x \in A, y \in B\}$,

$$\mathbb{P}(X \in A, Y \in B) = \int_A \int_B \, dy \, f(x,y)$$

Note 3:

$$F(a,b) = \int_{-\infty}^{a} \, dx \int_{-\infty}^{b} \, dy \, f(x,y), \quad \frac{\partial^2}{\partial a \partial b} F(a,b) = f(a,b)$$

Jointly distributed random variables

Note 4:

$$\mathbb{P}(a < X \leq a + da, b < Y \leq b + db)$$

$$= \int_{a}^{a+da} \, dx \int_{b}^{b+db} \, dy \, f(x,y) \approx f(a,b) \, dadb$$

for small da, db, if f is continuous at (a,b). Thus, $f(a,b)$ is a measure of how likely X, Y is near a, b.

Note 5: Each individual random variable is continuous. E.g.

$$\mathbb{P}(X \in A) = \mathbb{P}(X \in A, Y \in (-\infty, \infty)) = \int_A \int_{-\infty}^{\infty} \, dy \, f(x,y)$$

and hence the (marginal) density of X is

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy.$$

Similarly, $f_Y(y) = \int_{-\infty}^{\infty} f(x,y) \, dx$.
Problem 1a

Two fair dice are rolled. Find the joint probability mass function of X and Y when X is the largest value obtained on any die and Y is the sum of the values.

Example 1c(b)

The joint density function of X and Y is given by

$$f(x, y) = \begin{cases} 2e^{-x}e^{-2y}, & 0 < x < \infty, 0 < y < \infty \\ 0, & \text{otherwise} \end{cases}$$

Compute $P(X < Y)$.
Problem 8

The joint density function of X and Y is given by

$$f(x, y) = \begin{cases}
 c(y^2 - x^2)e^{-y}, & -y \leq x \leq y, 0 < y < \infty \\
 0, & \text{otherwise}
\end{cases}$$

(a) Find c.
(b) Find the marginal densities of X and Y.
(c) Find $\mathbb{E}X$,
(d) $P(0 < X < 1, Y < 1)$.

Problem 8 cont’d:
More than two random variables

The notions above can be extended to more than two random variables X_1, X_2, \ldots, X_n. For example, the joint c.d.f. is defined as

$$F(a_1, a_2, \ldots, a_n) = \mathbb{P}(X_1 \leq a_1, X_2 \leq a_2, \ldots, X_n \leq a_n).$$

The random variables X_1, X_2, \ldots, X_n are jointly continuous if there is a non-negative function $f(x_1, x_2, \ldots, x_n)$, called joint probability density function (p.d.f.), such that, for any set C in the n-dimensional space,

$$\mathbb{P}((X_1, X_2, \ldots, X_n) \in C) = \int \int \ldots \int f(x_1, x_2, \ldots, x_n)\,dx_1\,dx_2\ldots\,x_n.$$
That's all Folks!