Each problem is worth 10 points and only five randomly chosen problems will be graded. Please indicate whom you worked with, it will not affect your grade in any way. The link to upload the solution is available in canvas.

1. For years, area zip codes in the United States and Canada consisted of a sequence of five digits. The first digit was an integer between 2 and 9, the second digit was either 0 or 1, and the third to fifth digits were any integer from 1 to 9.
 (a) How many area codes were possible?
 (b) How many area codes starting with a 4 were possible?
 (c) How many area codes were possible with all distinct digits?

2. Four separate awards (best scholarship, best leadership qualities, and so on) are to be presented to selected students from a class of 40. How many different outcomes are possible if
 (a) a student can receive any number of awards?
 (b) a student can receive at most 1 award?
 (c) a student can receive at most 3 awards?

3. A person has 20 friends, of whom 8 will be invited to a party.
 (a) How many choices are there in total?
 (b) How many choices are there if 2 of the friends are feuding and will not attend together?
 (c) How many choices if 4 of the friends will only attend together?

4. How many different letter arrangements can be made from the letters
 (a) BLOCKS (b) CLASSES (c) ALLOWANCE (d) MISSISSIPPI

5. From a group of 12 women and 8 men, a committee consisting of 4 men and 4 women is to be formed. How many different committees are possible if
 (a) 2 of the men refuse to serve together?
 (b) 2 of the women refuse to serve together?
 (c) 1 man and 1 woman refuse to serve together?

6. In how many ways can 3 chemistry, 3 mathematics books, and 5 biology book be arranged on a bookshelf if
 (a) the books can be arranged in any order?
 (b) the mathematics books must be together and the biology books must be together?
 (c) the biology books must be together, but the other books can be arranged in any order?

7. (a) How many ways are there to split a dozen people into 3 teams, where one team has 2 people, and the other two teams have 5 people each? The teams are unordered.
 (b) How many ways are there to split a dozen people into 3 teams, where each team has 4 people? The teams are unordered.

8. (a) If 14 people are to be divided into 5 distinct committees of respective sizes 2, 2, 2, 3 and 5, how many divisions are possible?
 (b) What if the committees are not distinct, i.e., we want 3 committees of size 2 each, 1 of size 3 and 1 of size 5.

9. (a) How many paths are there from the point (0,0) to the point (4,6) in the plane such that each step either consists of going one unit up or one unit to the right?
 (b) How many paths are there from (0,0) to (10,10), where each step consists of going one unit up or one unit to the right, and the path has to go through (4,6)?

10. Expand (a) \((y + 2z^2)^4\) and (b) \((x + 3y + z)^3\).