Elementary matrices & the Determinant

Math 416 - E13/F13
03/21/2022

Last time:

A ∈ \(M_{n \times n}(\mathbb{R}) \)

1. \(A \xrightarrow{Rr \leftrightarrow R_2} B \) \(\Rightarrow \) \(\det B = -\det A \)

2. \(A \xrightarrow{cRr} B \) \(\Rightarrow \) \(\det B = c \det A \)

3. \(A \xrightarrow{Rr + cR_s} B \) \(\Rightarrow \) \(\det B = \det A \).

Elementary matrices: Result of doing a single row op to \(In \).

Today:

\(\det AB = \det A \cdot \det B \).

Strategy: Relate row ops to matrix multiplications.

Recall that, \(\text{rank}(A) = \dim(\text{Col Sp}(A)) = \dim(\text{Row Sp}(A)) \)

Thm:

For \(A ∈ M_{n \times n}(\mathbb{R}) \), if \(\text{rank}(A) < n \), then \(\det A = 0 \).

pf:

As \(\text{rank}(A) < n \), some row is a linear combination of the others, say

\[a_r = c_1 a_1 + \cdots + c_{r-1} a_{r-1} + c_{r+1} a_{r+1} + \cdots + c_n a_n \]

where \(a_i \) is the \(i \)th row of \(A \).

If we use row ops \(-c_i R_i + k_i \) for \(i = 1, 2, \ldots, n-1, n \),
then we get a matrix \(B \) whose \(n \)th row is 0. Hence, \(\det B = 0 \) \(\Rightarrow \) \(\det A = 0 \).
Thm: Suppose E is the elementary matrix where $I_n \xrightarrow{R} E$. If $A \in M_{n \times n}(\mathbb{R})$, then $A \xrightarrow{R} E A$.

Example:

- $R_1 \leftrightarrow R_2$

 \[
 \begin{pmatrix}
 0 & 1 \\
 1 & 0
 \end{pmatrix} \begin{pmatrix}
 1 & 2 \\
 3 & 4
 \end{pmatrix} = \begin{pmatrix}
 3 & 4 \\
 1 & 2
 \end{pmatrix}
 \]

- $3R_1$

 \[
 \begin{pmatrix}
 3 & 0 \\
 0 & 1
 \end{pmatrix} \begin{pmatrix}
 1 & 2 \\
 3 & 4
 \end{pmatrix} = \begin{pmatrix}
 3 & 6 \\
 3 & 4
 \end{pmatrix}
 \]

- $-R_1 + R_2$

 \[
 \begin{pmatrix}
 -1 & 0 \\
 1 & 0
 \end{pmatrix} \begin{pmatrix}
 1 & 2 \\
 3 & 4
 \end{pmatrix} = \begin{pmatrix}
 1 & 2 \\
 2 & 2
 \end{pmatrix}
 \]

pf of Thm:

Exc. Prove for all 3 types of row ops.

Thm: Every elementary matrix is invertible.

pf:

Suppose $I_n \xrightarrow{R} E$. Let R' be the row op that reverses R, that is $A \xrightarrow{R} B \xrightarrow{R'} A$ for all $A \in M_{n \times n}(\mathbb{R})$. Qn: Why does R' exist?

Let E' be the elementary matrix corr. with R'.

By prev thm, we have

- $E' E = \text{result of doing } R' \text{ to } E = I_n$
- $EE' = \text{do } R \text{ to } E' = I_n$

So, E is invertible with inverse E'. qed
Thm: \(A \in M_{n \times n}(\mathbb{R}) \) is invertible if and only if it is the product of elementary matrices.

Proof:

\(\Leftarrow \) If \(A = E_1 E_2 \cdots E_k \) with \(E_k \) elementary \(\forall k \), then each \(E_k \) is invertible and so
\[
A^{-1} = E_k^{-1} \cdots E_2^{-1} E_1^{-1}.
\]

\(\Rightarrow \) If \(A \) is invertible, then
\[
B = (A \mid I_n) \xrightarrow[\text{row ops}]{\text{new}} (I_n \mid A^{-1}) = C
\]
As each row op can be implemented by mult by an elementary matrix, we have \(E_1, E_2, \ldots, E_k \) such that
\[
E_k \cdots E_2 E_1 B = C
\]
which implies \(E_k \cdots E_2 E_1 A = I_n \)

\& so, \(A = E_k^{-1} \cdots E_2^{-1} E_1^{-1} \)

As the \(E_k^{-1} \) are also elementary, we're done. \(\Box \)

Thm: \(\det(AB) = \det(A) \cdot \det(B) \)

Proof: If \(\text{rank}(AB) < n \), then \(\det(AB) = 0 \).
Moreover, one of \(A, B \) must have rank \(< n \) and so one of \(\det A, \det B \) is 0. Thus, in this case, \(\det(AB) = \det A \cdot \det B \).

Thus, now we can assume that \(A, B, AB \) all have rank \(n \).
In particular, \(A = E_1 \cdots E_k, \ B = E_{k+1} \cdots E_m \)
where \(E_k \)’s are elementary.
The result now follows from:

Claim: Suppose \(C = E_1' \ldots E_p' \) where \(E_k' \) are elementary. Then,
\[
det C = (-1)^{\# \text{ type } \circ E_k'} \left(\text{product of } E_k \text{ in all type } \circ E_k' \right)
\]

pf of claim:
\(C \) is obtained from \(I_n \) which has \(det I \), by the row ops \(R_1', \ldots, R_k, R_l' \). By last time, only the type 0 & 2 ops change the \(det \) and do so in a way that proves the claim.

For all elementary matrices \(E \), \(det E^t = det E \).

pf: For type 1 and 2, \(E^t = E \).
For type 3, \((E_{R_n+cR_s})^t = E_{R_s+cR_n} \)
\[(AB)^t = B^t A^t\]

Proof: Check using definition.

Thm: For \(A \in M_{m \times n}(\mathbb{R}) \), \(\det A^t = \det A \).

Proof: \(\text{Row } sp(A^t) = \text{Col } sp(A) \).

Thus, if \(\det A = 0 \) \(\Rightarrow \) rank \(A < n \)

\[\Rightarrow \dim \text{Row } sp(A) < n \]

\[\Rightarrow \dim \text{Col } sp(A^t) < n \Rightarrow \text{rank } A^t < n \Rightarrow \det A^t = 0. \]

If \(A \) is invertible, \(A = E_1 E_2 \cdots E_k \), product of elementary matrices.

Thus,

\[\det A^t = \det (E_k^t \cdots E_2^t E_1^t) = \prod \det E_k^t \]

\[= \prod \det E_k = \det A. \]

qed.