1. Vector Spaces (Sections 1.1–1.6)

Important things you need to know include the definition of a vector space, a subspace, a spanning set, linear (in)dependence, a basis and the dimension of a vector space. You should also be able to solve a system of linear equations using row operations and find the solution set of a given linear system. Review chapter 1 of the textbook and/or the class notes if you feel uncomfortable with any of these concepts/terminology.

2. Linear transformations and matrices (Sections 2.1–2.5 & 3.2)

Throughout, let V and W be vector spaces over \mathbb{R}.

- A function $T : V \to W$ is linear if $T(cu + v) = cT(u) + v$ for every $u, v \in V$ and $c \in \mathbb{R}$.
- Let $T : V \to W$ be linear. The **null space** of T is
 \[\mathcal{N}(T) := \{ v \in V \mid T(v) = 0 \} \]
 which is a subspace of V and its dimension is called the **nullity** of T. The **range** of T is
 \[\mathcal{R}(T) := \{ T(v) \mid v \in V \}, \]
 which is a subspace of W and its dimension is called the **rank** of T.
- **(Dimension Theorem)** If V and W are finite dimensional and $T : V \to W$ is linear, then
 \[\text{nullity}(T) + \text{rank}(T) = \dim(V). \]
- A linear transformation $T : V \to W$ is an **isomorphism** if it is invertible (which is equivalent to one-to-one and onto).
- V and W are said to be isomorphic if there exists an isomorphism $T : V \to W$.
- If V and W are finite dimensional, then V and W are isomorphic if and only if $\dim(V) = \dim(W)$.
- Suppose V is finite dimensional and $\beta = \{ v_1, v_2, \ldots, v_n \}$ is an ordered basis for V. If $v \in V$ satisfies
 \[v = a_1 v_1 + a_2 v_2 + \cdots + a_n v_n \]
 for some $a_1, a_2, \ldots, a_n \in \mathbb{R}$, then the coordinate vector of v with respect to β is
 \[[v]_\beta = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}. \]
Let V and W be finite dimensional vector spaces with bases $\beta = \{v_1, v_2, \ldots, v_n\}$ and $\gamma = \{w_1, w_2, \ldots, w_m\}$, respectively and let $T : V \to W$ be linear. The matrix of T in the bases β and γ is

$$[T]_\beta^\gamma = \begin{pmatrix} [T(v_1)]_\gamma & [T(v_2)]_\gamma & \cdots & [T(v_n)]_\gamma \end{pmatrix} \in M_{m \times n}(\mathbb{R}).$$

For every $v \in V$, we have

$$[T(v)]_\gamma = [T]_\beta^\gamma [v]_\beta.$$

Define

$$\mathcal{L}(V,W) = \{ T : V \to W \mid T \text{ is linear} \},$$

which is a vector space under the “natural” addition and scalar multiplication. We define $\mathcal{L}(V) = \mathcal{L}(V,V)$.

Let X, Y, Z be finite dimensional vector spaces with bases α, β, γ and let $S \in \mathcal{L}(X,Y)$ and $T \in \mathcal{L}(Y,Z)$. Then $T \circ S \in \mathcal{L}(X,Z)$ and

$$[T \circ S]_\alpha^\gamma = [T]_\beta^\gamma [S]_\alpha^\beta.$$

A matrix $A \in M_{n \times n}(\mathbb{R})$ is invertible if there exists $B \in M_{n \times n}(\mathbb{R})$ such that $AB = I_n = BA$.

Let V and W are finite dimensional vector spaces with bases β and γ. Suppose that $\dim(V) = n$ and $\dim(W) = m$, then the function

$$\Phi : \mathcal{L}(V,W) \to M_{n \times n}(\mathbb{R})$$

$$T \mapsto [T]_\beta^\gamma$$

is an isomorphism. In particular, $\dim(\mathcal{L}(V,W)) = mn$.

Let V, W, β, γ be given as above. Then $T \in \mathcal{L}(V,W)$ is invertible if and only if $[T]_\beta^\gamma$ is invertible. Furthermore, $([T]_\beta^\gamma)^{-1} = [T^{-1}]_\gamma^\beta$.

(Computing A^{-1}) Let $A \in M_{n \times n}(\mathbb{R})$. Apply row operations to $(A \mid I_n)$ to obtain $(\text{RREF}(A) \mid B)$, where $\text{RREF}(A)$ is a matrix in reduced row echelon form. If $\text{RREF}(A) \neq I_n$, then A is not invertible; otherwise, $B = A^{-1}$.

(The rank of a matrix) Let $A \in M_{m \times n}(\mathbb{R})$. Then the row space and column space of A are

$$\text{RowSp}(A) = \text{span}(\text{rows of } A) \subseteq \mathbb{R}^n,$$

$$\text{ColSp}(A) = \text{span}(\text{columns of } A) \subseteq \mathbb{R}^m.$$

We have $\dim(\text{RowSp}(A)) = \dim(\text{ColSp}(A)) = \text{rank}(L_A)$; this quantity is called the rank of A. Note that elementary row operations do not change the row space. Hence if B is a matrix in row echelon form obtained from A using row operations, then $\text{rank}(A) = \text{rank}(B) = \text{number of leading entries of } B$.

(Change of Coordinates) Let V be an n–dimensional vector space and let $\beta' = \{v_1, v_2, \ldots, v_n\}$ and $\beta = \{w_1, w_2, \ldots, w_n\}$ be bases for V. The change of coordinate
matrix that changes the \(\beta' \)-coordinates into \(\beta \)-coordinates is
\[
[I_V]_{\beta'}^\beta = \left(\begin{array}{c|c|c|c}
[v_1]_\beta & [v_2]_\beta & \cdots & [v_n]_\beta \\
\end{array} \right) \in \mathcal{M}_{n \times n}(\mathbb{R}).
\]

For every \(v \in V \), we have
\[
[v]_\beta = [I_V]_{\beta'}^\beta [v]_{\beta'}.
\]

If \(T : V \to V \) is linear, then
\[
[T]_{\beta'} = Q^{-1}[T]_\beta Q
\]
where \(Q = [I_V]_{\beta'}^\beta \) and \(Q^{-1} = [I_V]_{\beta}^{\beta'} \).

\section*{3. Determinants (Sections 4.1–4.4)}

- The determinant of \((A_{11}) \in \mathcal{M}_{1 \times 1}(\mathbb{R}) \) is \(\det((A_{11})) = A_{11} \) and the determinant of \(A \in \mathcal{M}_{n \times n}(\mathbb{R}), n \geq 2, \) is defined recursively as
\[
\det(A) = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \det(\bar{A}_{1j})
\]
where \(\bar{A}_{1j} \) is the \((n-1) \times (n-1)\) matrix obtained from \(A \) by deleting the \(i \)th row and the \(j \)th column.

- One can also compute \(\det(A) \) by taking the expansion above along any row: for any \(1 \leq r \leq n \), we have
\[
\det(A) = \sum_{j=1}^{n} (-1)^{r+j} A_{rj} \det(\bar{A}_{rj}).
\]

- \textbf{(Multi-linearity of determinants)} Let \(n \in \mathbb{N}, 1 \leq r \leq n, \) and let \(k \in \mathbb{R} \). Then
\[
\det \begin{pmatrix}
 a_1 \\
 \vdots \\
 a_{r-1} \\
 b_r + kc_r \\
 a_{r+1} \\
 \vdots \\
 a_n
\end{pmatrix} = \det \begin{pmatrix}
 a_1 \\
 \vdots \\
 a_{r-1} \\
 b_r \\
 a_{r+1} \\
 \vdots \\
 a_n
\end{pmatrix} + k \det \begin{pmatrix}
 a_1 \\
 \vdots \\
 a_{r-1} \\
 c_r \\
 a_{r+1} \\
 \vdots \\
 a_n
\end{pmatrix}.
\]

- \textbf{(Determinants and row operations)} Let \(A \in \mathcal{M}_{n \times n} \) and let \(R_i \) be the \(i \)th row of \(A \). Then, we have
\[
A \xrightarrow{R_i \leftrightarrow R_j} B \implies \det(B) = -\det(A),
\]
\[
A \xrightarrow{R_i \rightarrow cR_j} B \implies \det(B) = c \det(A),
\]
\[
A \xrightarrow{R_i \rightarrow R_i + cR_j} B \implies \det(B) = \det(A).
\]
• **(Computing \(\det(A) \) using row operations)** Let \(A \in M_{n \times n}(\mathbb{R}) \). Suppose we obtain a matrix \(B \in M_{n \times n}(\mathbb{R}) \) in row echelon form (hence upper triangular) after performing a sequence of row operations on \(A \). Then \(\det(B) = \) the product of the diagonal entries of \(B \) and we can recover \(\det(A) \) using the theorem above.

• **(Properties of determinants)** Let \(A, B \in M_{n \times n}(\mathbb{R}) \). Then
 1. \(A \) is invertible if and only if \(\det(A) \neq 0 \).
 2. \(\det(AB) = \det(A) \det(B) \).
 3. If \(A \) is invertible, then \(\det(A^{-1}) = \frac{1}{\det(A)} \).

4. **Elementary Matrices** *(Sections 3.1)*

• An \(n \times n \) elementary matrix is obtained by performing an elementary row operation on the identity matrix \(I_n \). The elementary matrix is said to be of type 1, 2, or 3 according to whether the elementary row operation performed on \(I_n \) is a type 1, 2, or 3 operation, respectively.

• Let \(A \in M_{m \times n}(\mathbb{R}) \), and suppose that \(B \) is obtained from \(A \) by performing an elementary row operation. Let \(E \) be the elementary matrix obtained from \(I_n \) by performing the same elementary row operation as that which was performed on \(A \) to obtain \(B \). Then \(B = EA \).

• Elementary matrices are invertible and the inverse is the elementary matrix obtained by applying the inverse row operation to \(I_n \).

• Any invertible matrix can be written as a product of elementary matrices.

5. **Diagonalization** *(Sections 5.1–5.2)*

Let \(V \) be an \(n \)-dimensional vector spaces over \(\mathbb{R} \).

• A linear transformation \(T \in \mathcal{L}(V) \) is **diagonalizable** if there exists a basis \(\beta \) for \(V \) for which \([T]_\beta \) is a diagonal matrix. A matrix \(A \in M_{n \times n}(\mathbb{R}) \) is diagonalizable if \(L_A \in \mathcal{L}(\mathbb{R}^n) \) is diagonalizable.

• A vector \(v \in V \) is an **eigenvector** of \(T \in \mathcal{L}(V) \) if \(v \neq 0 \) and \(T(v) = \lambda v \) for some \(\lambda \in \mathbb{R} \) and \(\lambda \) is the corresponding **eigenvalue**. Eigenvectors and eigenvalues of \(A \in M_{n \times n}(\mathbb{R}) \) are those of \(L_A \).

• Let \(\gamma \) be a basis for \(V \). Then \(T \) is diagonalizable if and only if \([T]_\gamma \) is diagonalizable.

• The **characteristic polynomial** of \(A \in M_{n \times n}(\mathbb{R}) \) is \(f(t) = \det(A - tI_n) \).

• **(Eigenvalue test)** Let \(A \in M_{n \times n}(\mathbb{R}) \) with characteristic polynomial \(f(t) \). Then, \(\lambda \) is an eigenvalue of \(A \) if and only if \(f(\lambda) = 0 \); i.e., is a root of \(f(\cdot) \).

• Let \(\lambda \) be an eigenvalue of \(A \in M_{n \times n}(\mathbb{R}) \). The **eigenspace** of \(\lambda \) is \(E_\lambda = \mathcal{N}(A - \lambda I_n) \) and the dimension of \(E_\lambda \) is called the **geometric multiplicity** of \(\lambda \). The **algebraic multiplicity** of \(\lambda \) is the highest power of \(t - \lambda \) that divides the characteristic polynomial of \(A \).

• For any eigenvalue \(\lambda \), geometric multiplicity of \(\lambda \) \(\leq \) algebraic multiplicity of \(\lambda \).

• **(Diagonalization criteria)** Let \(A \in M_{n \times n}(\mathbb{R}) \).
– A is diagonalizable if and only if there exists a basis β for \mathbb{R}^n consisting of eigenvectors of A.

Comment: This criterion is normally used for theoretical purposes.

– A is diagonalizable if and only if there exist an invertible matrix $Q \in M_{n \times n}(\mathbb{R})$ and a diagonal matrix D such that $D = Q^{-1}AQ$. Moreover, we can choose $Q = [I_{\mathbb{R}^n}]_\beta$, where β is a basis for \mathbb{R}^n consisting of eigenvectors of A and γ is the standard basis for \mathbb{R}^n, and the diagonal entries of D are the eigenvalues corresponding to the eigenvectors in β.

Comment: The expression $D = Q^{-1}AQ$ is useful for computing things like A^k, since $A^k = (QDQ^{-1})^k = QD^kQ^{-1}$.

– A is diagonalizable if and only if the characteristic polynomial of A splits over \mathbb{R} and for each eigenvalue λ of A, the geometric multiplicity of λ equals the algebraic multiplicity of λ.

Comment: This is the diagonalization test that we use in practice.

6. Markov Chains and Matrix Limits (Sections 5.3)

• Let A, L be $n \times n$ real matrices. We say that $\lim_{n \to \infty} A^n = L$ if for all $1 \leq i, j \leq n$, we have $\lim_{n \to \infty} (A^n)_{ij} = (L)_{ij}$.

• If A is diagonalizable over \mathbb{R}, i.e., $A = QDQ^{-1}$ for a real diagonal matrix D and an invertible matrix Q, then $A^n = QD^nQ^{-1}$, then $\lim_{n \to \infty} A^n$ exists if and only if all diagonal entries of D is in the interval $(-1, 1]$.

• A vector $u \in \mathbb{R}^n$ is a probability vector if all entries of u are non-negative and their sum is one. e.g., $u = (0.5, 0, 0.5)$ is a probability vector, but $v = (-0.5, 1, 0.5)$ is not.

• A matrix $P \in M_{n \times n}(\mathbb{R})$ is called a transition matrix iff all entries of P are nonnegative and each columns of P sums to one.

• A transition matrix P is regular if some power of P contains only positive entries.

• Suppose P is a transition matrix. Then 1 is an eigenvalue for A and any other eigenvalue λ has $|\lambda| < 1$.

• Suppose P is a regular transition matrix. Then $\dim(E_1) = 1$, E_1 can be spanned by a probability vector u and $\lim_{n \to \infty} A^n = [u | u | \cdots | u]$.

7. Inner Product Spaces (Sections 6.1–6.5)

Let V be a vector spaces over $\mathbb{F}(= \mathbb{R} \text{ or } \mathbb{C})$.

• An inner product on V is a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ such that for all $x, y, z \in V$ and $c \in \mathbb{F}$, the following conditions hold:
 (i) $\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle$
 (ii) $\langle cx, y \rangle = c\langle x, y \rangle$
 (iii) $\langle x, y \rangle = \langle y, x \rangle$
 (iv) $\langle x, x \rangle > 0$ if $x \neq 0$.

• V is an inner product space if V is equipped with an (fixed) inner product.

Let V be an inner product space.
• The following conditions hold for all $x, y, z \in V$ and $c \in F$:
 (i) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle$
 (ii) $\langle x, cy \rangle = \bar{c}\langle x, y \rangle$
 (iii) $\langle x, 0 \rangle = \langle 0, x \rangle = 0$
 (iv) $\langle x, x \rangle > 0$ if and only if $x \neq 0$.
• The norm of $v \in V$ is $\|v\| = \sqrt{\langle v, v \rangle}$.
• For all $x, y \in V$ and $c \in F$, we have
 (i) $\|cx\| = |c|\|x\|$
 (ii) $\|x\| = 0$ if and only if $x = 0$
 (iii) $|\langle x, y \rangle| \leq \|x\|\|y\|$ (Cauchy-Schwarz)
 (iv) $\|x + y\| \leq \|x\| + \|y\|$ (triangle inequality)
• A subset S of V is orthogonal if $\langle x, y \rangle = 0$ for all distinct $x, y \in S$ and S is orthonormal if S is orthogonal and $\|x\| = 1$ for all $x \in S$.
• If $S = \{v_1, v_2, \ldots, v_k\}$ is an orthonormal subset of V, then for every $y \in \text{span}(S)$, we have
 $$y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i$$
and the scalars $\langle y, v_i \rangle$ are called the Fourier coefficients of y relative to S. This can also be extended to the case when S is infinite.
• If $S = \{v_1, v_2, \ldots, v_k\}$ is an orthonormal subset of V, then S is linearly independent.