[2 × 5 pts.] Label the following statements as True or False. Briefly explain for partial credit.

(a) If \(V = \text{span}(S) \), then every vector in \(V \) can be written uniquely as a linear combination of vectors in \(S \).

\[\text{Solution: False. We have } \mathbb{R}^2 = \text{span}((1, 0), (0, 1), (1, 1)) \text{ but } (1, 1) = (1, 0) + (0, 1). \]

(b) For two subsets \(S, T \subseteq V \), \(\text{span}(S) = \text{span}(T) \) implies that \(S = T \).

\[\text{Solution: False. We have } \text{span}\{(1, 0)\} = \text{span}\{(1, 0), (2, 0)\}. \]

(c) If \(S \) is a linearly dependent set, then each vector in \(S \) is a linear combination of other vectors in \(S \).

\[\text{Solution: False. Take } S = \{(0, 0), (1, 0)\}. \]

(d) The matrix \(A = \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \) is in RREF.

\[\text{Solution: False. The last column is a pivot column but a non-zero entry 2 other than the leading 1.} \]

(e) For the augmented matrix \(M = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \) the linear system \(LS(M) \) has infinitely many solutions.

\[\text{Solution: False. No solution as the last column is a pivot column.} \]