MATH 416: Abstract Linear Algebra
Midterm 3 – Spring 2022
DATE: April 20, 2022

FILL OUT THE INFORMATION IN THE BOX.

NAME: _____________________________ Netid: _______________

I pledge that the work on this exam is entirely my own.

Student signature: __

READ THE FOLLOWING INFORMATION.

• This is a 50-minute exam.
• There is one extra credit problem. The maximum score for this exam is 50.
• Books, notes, and other aids are not allowed except for one page of cheat sheet. Collaboration is forbidden.
• Show all steps to earn full credit. Multiple answers for any problem earn ZERO credit.
• Do not unstaple pages. Loose pages will be ignored.

<table>
<thead>
<tr>
<th>Problem Number</th>
<th>Possible Points</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Q2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Q5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Extra</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

— Best of Luck! —
Q1. Let $A = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}$.

(a) Compute the characteristic polynomial of A. \hspace{1cm} \frac{\hspace{1cm}}{2}

(b) Find all eigenvalues of A. \hspace{1cm} \frac{\hspace{1cm}}{2}

(c) For each eigenvalue compute the corresponding eigenspace. \hspace{1cm} \frac{\hspace{1cm}}{2}

(d) Diagonalize A, giving a diagonal matrix D and an invertible matrix Q so that $D = Q^{-1}AQ$. \hspace{1cm} \frac{\hspace{1cm}}{3}

(e) At left is our usual visualization of $L_A: \mathbb{R}^2 \rightarrow \mathbb{R}^2$. Use your answer in (d) to draw a more informative picture of L_A at right. \hspace{1cm} \frac{\hspace{1cm}}{1}
Q2. (a) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that

$$T(1, 0, 0) = (1, 2, 1), \quad T(0, 1, 0) = (0, -1, 2), \quad T(0, 0, 1) = (2, 2, 0).$$

Let S be the unit sphere $\{(x, y, z) \mid x^2 + y^2 + z^2 \leq 1\}$ with volume $\frac{4\pi}{3}$. Find the volume of $T(S)$.

(b) Let $A, B \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ such that

$$AB = \begin{pmatrix} 3 & 1 & 2 \\ 2 & -2 & 2 \\ 0 & 1 & -1 \end{pmatrix}.$$

Find $\det(BA^2B)$. Justify each step.

(c) The constant term of a polynomial $f(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0$ is the final coefficient a_0. For the characteristic polynomial of an $n \times n$ matrix A, prove that the constant term is $\det(A)$.

\[\text{---/3}\]
(This page intentionally left blank. You can use it for scratch work.)
Q3. Suppose $A \in \mathcal{M}_{3 \times 3}(\mathbb{R})$ is a transition matrix associated to a Markov chain.

(a) If $1/2$ and $1/3$ are eigenvalues of A, **prove** that A is **diagonalizable**. \quad ___/4

(b) **Give a transition matrix** B where $1/2$ and $1/3$ are eigenvalues and justify your answer. \quad ___/3

(c) If $\mathcal{N}(A - I) = \{ (t, 3t, 4t) \mid t \in \mathbb{R} \}$, **compute** (with justification) the matrix \quad ___/3

\[
\lim_{n \to \infty} A^n = \begin{pmatrix}
& & \\
& & \\
& &
\end{pmatrix}
\]
(This page intentionally left blank. You can use it for scratch work.)
Q4. (a) Let $T : \mathcal{M}_{2 \times 2}(\mathbb{R}) \to \mathcal{M}_{2 \times 2}(\mathbb{R})$ be the $T(A) = A^t$. Compute the characteristic polynomial of T and find the eigenvalues of T. Hint: Use the standard basis.

(b) Let $U : V \to V$ be a linear transformation such that $U^2 = U$ and $U \neq I_V$. Prove that 0 is an eigenvalue of U.

(c) Suppose the only eigenvalues of $B \in \mathcal{M}_{4 \times 4}(\mathbb{R})$ are $3, 4$ with $\dim(E_3) = \dim(E_4) = 2$. Determine whether B is diagonalizable. Explain your answer.
Q5. Circle true or false as appropriate; you **DO NOT** need to provide any justification.

(a) The matrix \(A = \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \) can be written as a product of elementary matrices.

 TRUE FALSE

(b) If a \(n \times n \) matrix has \(n \) distinct real eigenvalues, it is diagonalizable.

 TRUE FALSE

(c) If \(A \) and \(B \) are \(n \times n \) matrices, then \(\det(AB) = \det(BA) \).

 TRUE FALSE

(d) If all eigenvalues of \(A \in \mathcal{M}_{n\times n}(\mathbb{R}) \) are 1 then \(A = I_n \).

 TRUE FALSE

(e) For any eigenvalues geometric multiplicity is always bigger than or equal to algebraic multiplicity.

 TRUE FALSE

(f) If \(A \) and \(B \) are similar matrices, then \(A^3 \) and \(B^3 \) are also similar.

 TRUE FALSE

(g) There exists a transition matrix where \(-1\) is an eigenvalue.

 TRUE FALSE

(h) A transition matrix is always diagonalizable.

 TRUE FALSE

(i) The vectors \(\{(1, 0), (i, 0), (0, 1), (0, i)\} \) are a basis for \(\mathbb{C}^2 \) regarded as a vector space over \(\mathbb{R} \).

 TRUE FALSE

(j) The formula \(\langle f, g \rangle = \int_0^1 f(t)g(t) \, dt \) defines an inner product on \(\mathcal{P}_2(\mathbb{C}) \).

 TRUE FALSE
(This page intentionally left blank. You can use it for scratch work.)
Extra Credit Suppose $A \in M_{n \times n}(\mathbb{R})$ satisfies $A^2 = 3A$. Show that A has at least one real eigenvalue.
(This page intentionally left blank. You can use it for scratch work.)