Homework 10

MATH 416: Abstract Linear Algebra

Due date: May 4, 2022

Each problem is worth 10 points. Please indicate whom you worked with, it will not affect your grade in any way.

1. For each linear operator T on an inner product space V, determine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.

 (a) $V = \mathbb{R}^2$ and T is defined by $T(a, b) = (2a - 2b, -2a + 5b)$.
 (b) $V = \mathbb{C}^2$ and T is defined by $T(a, b) = (2a + ib, a + 2b)$.
 (c) $V = M_{2\times2}(\mathbb{R})$ and T is defined by $T(A) = A^t$.

2. Let T and U be self-adjoint operator on an inner product space V. Prove that TU is self-adjoint if and only if $TU = UT$.

3. Let T be a normal operator on a finite-dimensional inner product space V.

 (a) Prove that $\mathcal{N}(T) = \mathcal{N}(T^*)$ and $\mathcal{R}(T) = \mathcal{R}(T^*)$.
 (b) Prove that the subspaces $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are orthogonal. **Hint:** Use the last problem in HW9.
 (c) Give an example of a (non-normal) linear operator S where $\mathcal{N}(S) \neq \mathcal{N}(S^*)$ and $\mathcal{R}(S) \neq \mathcal{R}(S^*)$.

4. A matrix $A \in M_{n \times n}(\mathbb{R})$ is **Gramian** if there is a $B \in M_{n \times n}(\mathbb{R})$ such that $A = B^tB$. Prove that A is Gramian if and only if A is symmetric and all of its eigenvalues are non-negative. **Hint:** For (\Leftarrow), note that A is diagonalizable via an orthonormal basis $\{u_1, \ldots, u_n\}$ where u_i is an eigenvector of A with eigenvalue λ_i. Consider the linear operator T on \mathbb{R}^n where $T(u_i) = \sqrt{\lambda_i}u_i$. Now take $B = [T]_{\text{std}}$ and check that $A = B^tB$.

5. Find an orthogonal matrix whose first row is $(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$.