1. Elementary Matrices. (Sections 3.1).

- An $n \times n$ elementary matrix is obtained by performing an elementary row operation on the identity matrix I_n. The elementary matrix is said to be of type 1, 2, or 3 according to whether the elementary row operation performed on I_n is a type 1, 2, or 3 operation, respectively.
- Let $A \in \mathcal{M}_{n \times m}(\mathbb{R})$, and suppose that B is obtained from A by performing an elementary row operation. Let E be the elementary matrix obtained from I_n by performing the same elementary row operation as that which was performed on A to obtain B. Then $B = EA$.
- Elementary matrices are invertible and the inverse is the elementary matrix obtained by applying the inverse row operation to I_n.
- Any invertible matrix can be written as a product of elementary matrices.
2. Determinants. (Sections 4.1, 4.2).

- The determinant of $(A_{11}) \in M_{1 \times 1}(\mathbb{R})$ is $\det((A_{11})) = A_{11}$ and the determinant of $A \in M_{n \times n}$, $n \geq 2$, is defined recursively as

\[
\det(A) = \sum_{j=1}^{n} (-1)^{1+j} A_{1j} \det(\tilde{A}_{1j}),
\]

where \tilde{A}_{ij} is the $(n-1) \times (n-1)$ matrix obtained from A by deleting the ith row and the jth column.

One can also compute $\det(A)$ by taking the expansion above along any row: for any $1 \leq r \leq n$, we have

\[
\det(A) = \sum_{j=1}^{n} (-1)^{r+j} A_{rj} \det(\tilde{A}_{rj}).
\]

- (Multi-linearity of determinants) Let $n \in \mathbb{N}$, $1 \leq r \leq n$, and let $k \in \mathbb{R}$. Then

\[
\det \begin{pmatrix}
- a_1 - \\
\vdots \\
- a_{r-1} - \\
- b_r + kc_r - \\
- a_{r+1} - \\
\vdots \\
- a_n -
\end{pmatrix} = \det \begin{pmatrix}
- a_1 - \\
\vdots \\
- a_{r-1} - \\
- b_r - \\
- a_{r+1} - \\
\vdots \\
- a_n -
\end{pmatrix} + k \det \begin{pmatrix}
- a_1 - \\
\vdots \\
- a_{r-1} - \\
- c_r - \\
- a_{r+1} - \\
\vdots \\
- a_n -
\end{pmatrix}.
\]

- (Determinants and row operations)

Let $A \in M_{n \times n}$ and let R_i be the ith row of A. Then we have

\[
A \xrightarrow{R_i \leftrightarrow R_j} B \Rightarrow \det(B) = - \det(A),
\]

\[
A \xrightarrow{cR_i} B \Rightarrow \det(B) = c \det(A),
\]

\[
A \xrightarrow{R_i \rightarrow cR_i + R_j} B \Rightarrow \det(B) = \det(A).
\]

- (Computing $\det(A)$ using row operations) Let $A \in M_{n \times n}(\mathbb{R})$. Suppose we obtain a matrix $B \in M_{n \times n}(\mathbb{R})$ in row echelon form (hence upper triangular) after performing a sequence of row operations on A. Then $\det(B) = \text{the product of the diagonal entries of } B$ and we can recover $\det(A)$ using the theorem above.

- (Properties of determinants) Let $A, B \in M_{n \times n}(\mathbb{R})$. Then

1. A is invertible if and only if $\det(A) \neq 0$.

2. $\det(AB) = \det(A) \det(B)$.

3. If A is invertible, then $\det(A^{-1}) = \frac{1}{\det(A)}$.
3. Diagonalization. (Sections 5.1, 5.2).

Let V be an n-dimensional vector space over \mathbb{R}.

- A linear transformation $T \in \mathcal{L}(V)$ is **diagonalizable** if there exists a basis β for V for which $[T]_\beta$ is a diagonal matrix. A matrix $A \in M_{n \times n}(\mathbb{R})$ is diagonalizable if $L_A \in \mathcal{L}(\mathbb{R}^n)$ is diagonalizable.

- A vector $v \in V$ is an **eigenvector** of $T \in \mathcal{L}(V)$ if $v \neq 0$ and $T(v) = \lambda v$ for some $\lambda \in \mathbb{R}$ and λ is the corresponding **eigenvalue**. Eigenvectors and eigenvalues of $A \in M_{n \times n}(\mathbb{R})$ are those of L_A.

- Let γ be a basis for V. Then T is diagonalizable if and only if $[T]_\gamma$ is diagonalizable.

- The **characteristic polynomial** of $A \in M_{n \times n}(\mathbb{R})$ is $f(t) = \det(A - tI_n)$.

- **(Eigenvalue test)**

 Let $A \in M_{n \times n}(\mathbb{R})$ with characteristic polynomial $f(t)$. Then λ is an eigenvalue of A if and only if $f(\lambda) = 0$; i.e., λ is a root of $f(t)$.

- Let λ be an eigenvalue of $A \in M_{n \times n}(\mathbb{R})$. The **eigenspace** of λ is $E_\lambda = N(A - \lambda I_n)$ and the dimension of E_λ is called the **geometric multiplicity** of λ. The **algebraic multiplicity** of λ is the highest power of $t - \lambda$ that divides the characteristic polynomial of A.

- For any eigenvalue λ, geometric multiplicity of λ is less than or equal to algebraic multiplicity of λ.

- **(Diagonalization criteria)** Let $A \in M_{n \times n}(\mathbb{R})$.

 - A is diagonalizable if and only if there exists a basis β for \mathbb{R}^n consisting of eigenvectors of A.

 Comment: This criterion is normally used for theoretical purposes.

 - A is diagonalizable if and only if there exist an invertible matrix $Q \in M_{n \times n}(\mathbb{R})$ and a diagonal matrix D such that $D = Q^{-1}AQ$. Moreover, we can choose $Q = [I_{\mathbb{R}^n}]_\beta$, where β is a basis for \mathbb{R}^n consisting of eigenvectors of A and γ is the standard basis for \mathbb{R}^n, and the diagonal entries of D are the eigenvalues corresponding to the eigenvectors in β.

 Comment: The expression $D = Q^{-1}AQ$ is useful for computing things like A^k, since $A^k = (QDQ^{-1})^k = QD^kQ^{-1}$.

 - A is diagonalizable if and only if the characteristic polynomial of A splits over \mathbb{R} and for each eigenvalue λ of A, the geometric multiplicity of λ equals the algebraic multiplicity of λ.

 Comment: This is the diagonalization test that we use in practice.
4. Inner Product Spaces. (Section 6.1).

Let V be a vector spaces over \(\mathbb{F}(= \mathbb{R} \) or \(\mathbb{C} \)).

- An inner product on \(V \) is a map \(\langle \cdot , \cdot \rangle : V \times V \rightarrow \mathbb{F} \) such that for all \(x, y, z \in V \) and \(c \in \mathbb{F} \), the following conditions hold:
 (i) \(\langle x + z, y \rangle = \langle x, y \rangle + \langle z, y \rangle \)
 (ii) \(\langle cx, y \rangle = c \langle x, y \rangle \)
 (iii) \(\langle x, y \rangle = \langle y, x \rangle \)
 (iv) \(\langle x, x \rangle > 0 \) if \(x \neq 0 \).
- \(V \) is an inner product space if \(V \) is equipped with an (fixed) inner product.

Let \(V \) be an inner product space.

- The following conditions hold for all \(x, y, z \in V \) and \(c \in \mathbb{F} \):
 (i) \(\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle \)
 (ii) \(\langle cx, y \rangle = c \langle x, y \rangle \)
 (iii) \(\langle x, 0 \rangle = \langle 0, x \rangle = 0 \)
 (iv) \(\langle x, x \rangle > 0 \) if and only if \(x \neq 0 \).
- The norm of \(v \in V \) is \(\|v\| = \sqrt{\langle v, v \rangle} \).
- For all \(x, y \in V \) and \(c \in \mathbb{F} \), we have
 (i) \(\|cx\| = |c|\|x\| \)
 (ii) \(\|x\| = 0 \) if and only if \(x = 0 \)
 (iii) \(\|x + y\| \leq \|x\| + \|y\| \) (Cauchy-Schwarz)
 (iv) \(\|x + y\| \leq \|x\| + \|y\| \) (triangle inequality).
- A subset \(S \) of \(V \) is orthogonal if \(\langle x, y \rangle = 0 \) for all distinct \(x, y \in S \) and \(S \) is orthonormal if \(S \) is orthogonal and \(\|x\| = 1 \) for all \(x \in S \).
- If \(S = \{v_1, \ldots, v_k\} \) is an orthonormal subset of \(V \), then for every \(y \in \text{span}(S) \), we have
 \[
 y = \sum_{i=1}^{k} \langle y, v_i \rangle v_i
 \]
 and the scalars \(\langle y, v_i \rangle \) are called the Fourier coefficients of \(y \) relative to \(S \). This can also be extended to the case when \(S \) is infinite.
- If \(S = \{v_1, \ldots, v_k\} \) is an orthonormal subset of \(V \), then \(S \) is linearly independent.