(1) Let \(A = \begin{pmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 3 \end{pmatrix} \) and let \(L_A : \mathbb{R}^2 \to \mathbb{R}^3 \) be the corresponding linear transformation.

(a) Compute \(L_A(1,2) \).

(b) Find a basis for \(N(L_A) \).

(c) Find a basis for \(R(L_A) \).

(2) Let \(\mathbb{R}^\infty \) be the vector space of sequences of real numbers. Define \(T : \mathbb{R}^\infty \to \mathbb{R}^\infty \) by \(T((a_1,a_2,a_3,...)) = (a_2,a_3,...) \). Prove that \(T \) is linear. Is \(T \) one-to-one? Is \(T \) onto?

(3) (a) Let \(V \) and \(W \) be vector spaces. Define what it means for \(T : V \to W \) to be an isomorphism.

(b) Determine whether the following linear transformation is an isomorphism.

\[T : P_3(\mathbb{R}) \to M_{2\times2}(\mathbb{R}) \text{ defined by } T(a + bx + cx^2 + dx^3) = \begin{pmatrix} a-b & b-c \\ c-d & d-a \end{pmatrix} \]

(4) (a) State the dimension theorem.

(b) Define \(T : P_3(\mathbb{R}) \to P_3(\mathbb{R}) \) by \(T(p(x)) = p'(x) \). Find \(\text{nullity}(T) \) and \(\text{rank}(T) \).

(5) Define \(T : P_2(\mathbb{R}) \to P_2(\mathbb{R}) \) by \(T(p(x)) = p(x) + p'(x) \). Let \(\beta = \{1, x, x^2\} \) and \(\gamma = \{x^2, x^2 + 2x, x^2 + 4x + 2\} \).

(a) Compute \([T]_{\beta} \) and the change of coordinate matrices \([I_{P_2(\mathbb{R})}]_{\gamma}^\beta \) and \([I_{P_2(\mathbb{R})}]_{\beta}^\gamma \).

(b) Use part (a) to compute \([T]_{\gamma} \).
(6) Let $A \in M_{m \times n}(\mathbb{R})$.

(a) Define the rank of A.

(b) Prove that $\text{rank}(A) = \text{rank}(A^t)$. (You may use any theorems/results proven or given in class.)

(7) Let $A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$.

(a) Compute $\det(A)$ using cofactor expansion along any row of A.

(b) Row reduce A and use the resulting matrix in row echelon form to compute $\det(A)$.