Homework 9

MATH 416: Abstract Linear Algebra

Due date: April 27, 2018

Textbooks: In the assignment, the two texts are abbreviated as follows:

1. Section 6.2 of [FIS], Problem 2 parts (b, c, g).

Solution:

(b) Pick \(w_1 = (0,0,1), w_2 = (0,1,1), \) and \(w_3 = (1,1,1) \) and get the answer \(\beta = \{(0,0,1), (0,1,0), (1,0,0)\} \).

And we also know that the Fourier coefficients of \(x \) relative to \(\beta \) are \(1, 0, 1 \).

(c) The basis is \(\beta = \{1, \sqrt{3}(2x - 1), \sqrt{5}(6x^2 - 6x + 1)\} \) and the Fourier coefficients are \(\frac{3}{2}, \frac{\sqrt{3}}{6}, 0 \).

(g) The basis is \(\beta = \{\left(\frac{1}{2}, \frac{5}{6}\right), \left(-\frac{\sqrt{2}}{3}, \frac{\sqrt{2}}{3}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{3}\right)\} \)

and the Fourier coefficients are \(24, 6\sqrt{2}, -9\sqrt{2} \).

2. Section 6.2 of [FIS], Problems 6 and 13 (a-c).

Solution:

6. Apply Theorem 6.6 to \(x \) in \(V \). We know that \(x \) could be uniquely written as \(u + v \) with \(u \in W \) and \(v \in W^\perp \). Since \(x \notin W \), we have \(v \neq 0 \). Pick \(y = v \). We have \(\langle x, y \rangle = \langle u, v \rangle + \langle v, v \rangle = \|v\|^2 > 0 \).

13.(a) If \(x \in S^\perp \) then we have that \(x \) is orthogonal to all elements of \(S \), so are all elements of \(S_0 \). Hence we have \(x \in S_0^\perp \).

13.(b) If \(x \in S \), we have that \(x \) is orthogonal to all elements of \(S^\perp \). This means \(x \) is also an element in \((S^\perp)^\perp \) and thus \(S \subseteq (S^\perp)^\perp \). This implies that

\[
\text{span}(S) \subseteq (S^\perp)^\perp
\]

since \(\text{span}(S) \) is the smallest subspace containing \(S \) and every orthogonal complement is a subspace.

13.(c) By the previous argument, we already have that \(W \subseteq (W^\perp)^\perp \). For the converse, if \(x \notin W \), we may find, by Problem 6), \(y \in W^\perp \) and \(\langle x, y \rangle \neq 0 \) and hence \(x \notin (W^\perp)^\perp \). This means that \(W \supseteq (W^\perp)^\perp \).

3. Section 6.2 of [FIS], Problem 7.

Solution: The necessity comes from the definition of orthogonal complement, since every element in \(\beta \) is an element in \(W \). For the sufficiency, assume that \(\langle z, v \rangle = 0 \) for all \(v \in \beta \). Since \(\beta \) is a basis, every element in \(W \) could be written as \(\sum_{i=1}^{k} a_i v_i \) where \(a_i \) is some scalar and \(v_i \) is element in \(\beta \). So we have

\[
\langle z, \sum_{i=1}^{k} a_i v_i \rangle = \sum_{i=1}^{k} a_i \langle z, v_i \rangle = 0.
\]

Hence \(z \) is an element in \(W^\perp \).
4. Section 6.2 of [FIS], Problem 8.

Solution: We apply induction on n. When $n = 1$, the Gram-Schmidt process always preserve the first vector. Suppose the statement holds for $n \leq k$. Consider the a orthogonal set of nonzero vectors $\{w_1, w_2, \ldots, w_k\}$. By induction hypothesis, we know that the vectors $v_i = w_i$ for $i = 1, 2, \ldots, k-1$, where v_i is the vector derived from the process. Now we apply the process the find

$$v_n = w_n - \sum_{i=1}^{k-1} \frac{\langle w_n, v_i \rangle}{\|v_i\|^2} v_i = w_n - 0 = w_n.$$

So we get the desired result.

5. Section 6.2 of [FIS], Problem 11.

Solution: Since we did not discuss complex matrices before this week, we will only work with real matrices so that $A^* = A^t$, but the same proof works for complex matrices. Use the fact $(AA^t)_{ij} = \langle v_i, v_j \rangle$ for all i and j, where v_i is the i-th row vector of A.

6. Section 6.3 of [FIS], Problem 12.

Solution:

(a) If $x \in R(T^* \perp)$ we have $0 = \langle x, T^*(y) \rangle = \langle T(x), y \rangle$ for all y. Thus we have $T(x) = 0$ or $x \in \mathcal{N}(T)$. Conversely, if $x \in \mathcal{N}(T)$, we have $\langle x, T^*(y) \rangle = \langle T(x), y \rangle = 0$ for all y. This means that x is an element in $R(T^* \perp)$.

(b) By Exercise 6.2.13(c) we have $\mathcal{N}(T)^\perp = (R(T^* \perp))^\perp = R(T^*)$.

7. Section 6.3 of [FIS], Problem 14.

Solution: It is linear since

$$T(cx_1 + x_2) = \langle cx_1 + x_2, y \rangle z = c\langle x_1, y \rangle z + \langle x_2, y \rangle z = cT(x_1) + T(x_2).$$

On the other hand, we have

$$\langle T(u), v \rangle = \langle (u, y)z, v \rangle = \langle u, y \rangle \langle z, v \rangle = \langle u, (v, z)y \rangle$$

for all u and v. So we have

$$T^*(x) = \langle x, z \rangle y.$$