Homework 7
MATH 416: Abstract Linear Algebra
Due date: April 4, 2018

Textbooks: In the assignment, the two texts are abbreviated as follows:

1. Section 5.1 of [FIS], Problem 1.
2. Section 5.1 of [FIS], Problem 2 parts (a) and (c).
3. Section 5.1 of [FIS], Problem 3(a).
4. Section 5.1 of [FIS], Problem 4 parts (b) and (h).
5. Let T be a linear operator on a finite-dimensional vector space V.
 (a) Show that T is invertible if and only if 0 is not an eigenvalue of T.
 (b) If T is invertible, show that λ^{-1} is an eigenvalue of T^{-1} if and only if λ is an eigenvalue of T.
6. Suppose $T : V \to V$ is a linear operator with V finite-dimensional. Suppose $v \in V$ is an eigenvector of T with eigenvalue λ. As usual, $T^m : V \to V$ denotes composition of T with itself m times. Prove that v is also an eigenvector for T^m and give a formula for the corresponding eigenvalue.
7. Prove that similar matrices have the same characteristic polynomial.
8. Section 5.2 of [FIS], Problem 1 parts (a) to (g).
9. Section 5.2 of [FIS], Problem 2, parts (e) and (g).
10. Section 5.2 of [FIS], Problem 3, parts (a) and (d).