Homework 10
MATH 416: Abstract Linear Algebra
Due date: May 2, 2018

Textbooks: In the assignment, the two texts are abbreviated as follows:

1. Section 6.4 of [FIS], Problem 2 parts (a), (c), and (e).
2. Section 6.4 of [FIS], Problem 4.
3. Let \(T \) be a normal operator on a finite-dimensional inner product space \(V \).
 (a) Prove that \(\mathcal{N}(T) = \mathcal{N}(T^*) \) and \(\mathcal{R}(T) = \mathcal{R}(T^*) \).
 (b) Prove that the subspaces \(\mathcal{N}(T) \) and \(\mathcal{R}(T) \) are orthogonal.
 (c) Give an example of a (non-normal) linear operator \(S \) where \(\mathcal{N}(S) \neq \mathcal{N}(S^*) \) and \(\mathcal{R}(S) \neq \mathcal{R}(S^*) \).
 \textbf{Hint:} Problem 6.3.12 is your friend here.
4. A matrix \(A \in \mathcal{M}_{n \times n}(\mathbb{R}) \) is \textit{Gramian} if there is a \(B \in \mathcal{M}_{n \times n}(\mathbb{R}) \) such that \(A = B^t B \). Prove that \(A \) is Gramian if and only if \(A \) is symmetric and all of its eigenvalues are non-negative.
 \textbf{Hint:} For \((\Leftarrow) \), note that \(A \) is diagonalizable via an orthonormal basis \(\{u_1, \ldots, u_n\} \) where \(u_i \) is an eigenvector of \(A \) with eigenvalue \(\lambda_i \). Consider the linear operator \(T \) on \(\mathbb{R}^n \) where \(T(u_i) = \sqrt{\lambda_i} u_i \). Now take \(B = [T]_{\text{std}} \) and check that \(A = B^t B \).
5. Suppose that \(v_1, \ldots, v_n \) are vectors in \(\mathbb{R}^n \) and let \(P \) be the parallelepiped spanned by them. Consider the matrix \(G \in \mathcal{M}_{n \times n}(\mathbb{R}) \) where \(G_{ij} = \langle v_i, v_j \rangle \). (As usual, the inner product here is just the ordinary dot product.)
 (a) Show that \(G \) is Gramian.
 (b) Show that \(\det(G) \geq 0 \).
 (c) Show that the unsigned volume of \(P \) is \(\sqrt{\det(G)} \).
 In fact, \(G \) is usually called the Gram matrix of these vectors.
6. Section 6.5 of [FIS], Problem 11.
7. Section 6.5 of [FIS], Problem 17.