Def: A series $\sum x_n$ in a Banach space is called weakly unconditionally convergent if $\forall x^* \in X^*$, $\sum_{n=1}^{\infty} x^*(x_n) < \infty$.

Proposition: Let $\sum x_n$ be a series in a Banach space. TFAE
i) $\sum x_n$ is WUC
ii) $\exists C$ s.t. $\forall FCH$ finite, $\| \mathcal{F} \| \leq C$
iii) $\exists T \in \mathcal{L}(c_0, X)$ s.t. $T e_n = x_n \quad \forall n \in \mathbb{N}$.

Theorem (Bessaga-Pelczyński): Let X be a Banach space. TFAE
i) X does not contain an isomorphic copy of c_0.
ii) Every WUC series converges unconditionally in norm.

\Rightarrow i) is obvious because in c_0, $\sum x_n$ is WUC but not convergent.

For $i) \Rightarrow ii)$ we need the following:

Theorem: Let X be a Banach space & $T \in \mathcal{L}(c_0, X)$. TFAE
i) T is compact (i.e. $\overline{\{(B_{c_0})^{\infty}, X \text{ compact}\}}$
ii) T is weakly compact (i.e. $\overline{T(B_{c_0})^{\infty}, X \text{ w-compact}}$
iii) T is strictly singular (i.e. $\not\exists V \subset c_0$ closed & infinite dim. s.t. $T|V$ is an embedding)
iv) If $x_n = \langle e_i, x \rangle_{c_0}$ then $\lim_n \|Tx_n\| = 0$.

Proof of Bessaga-Pelczynski: \(i \Rightarrow ii \)

Assume \(\exists WUC \ X_n \) that does not converge unconditionally.

- \(X_n \) is WUC: \(T : c_0 \to X \) with \(T(a) = \sum_n a(n)X_n \) is bounded.
- \(\exists X_n \) does not converge unconditionally: \(\exists > 0 \) s.t. \(\forall n \in \mathbb{N} \) \(\exists F_n \subset \mathbb{N} \) finite with \(\min F_n > n \) \& \(\| \sum_{i \in F_n} x_i \| \geq \varepsilon \).

Define \(a_n \in B_{c_0} \): \(a_n(i) = \begin{cases} 1 & : i \in F_n \\ 0 & : \text{otherwise} \end{cases} \) & observe
\[
T a_n = \sum_{i \in F_n} x_i \Rightarrow \| T \|_\infty \geq \varepsilon \ \forall n \in \mathbb{N}.
\]
By the previous theorem \(T \) is not strictly singular, i.e., \(\exists Y \subset c_0 \) s.t. \(T_{|Y} : Y \to X \) is an isomorphism. But \(c_0 \lesssim Y \to X \Rightarrow c_0 \lesssim X \).

Proof of other theorem: \(i) \Rightarrow ii) \) is obvious.

For \(ii) \Rightarrow iii) \) Assume that \(T \) is w-compact but not strictly singular, i.e., \(\exists Y \subset c_0 \) inf. dim. s.t. \(T_{|Y} : Y \to T(Y) \) is an isomorphism. But \(\overline{T(B_Y)}^w \) is w-compact, then \(\overline{T(B_Y)}^w \) is w-compact (\(\overline{T(Y)} \to Y \) is w-conv.) & has non-empty interior, thus \(B_Y \) is w-compact \(\Rightarrow Y \) is reflexive. But \(c_0 \lesssim Y \) which is absurd. For \(iii) \Rightarrow iv) \) Assume that
\(\exists > 0 \) s.t. for \(n < n_2 < \ldots < n_k < \ldots \), \(\| T(y_k) \| \geq \varepsilon \ \forall k \in \mathbb{N} \).
Take $x_k \in Y_{n_{12}}$ with $\|x_k\| = 1$ s.t. $\|T x_k\| > 2$.

Observe that $\forall i \in I, \lim_{k \to \infty} e_i(x_k) = 0$. By the gliding hump argument, (x_k) has a subsequence (called (x_i)) that is equivalent to (e_i).

In particular, $(x_k) \Rightarrow 0$ implies $(T x_k) \Rightarrow 0$.

By passing to another subsequence, $(T x_k)$ is S-basic with some constant k.

Claim: $(x_i) = (T x_k)$, i.e., $\overline{T(x_i)}_{k \to \infty}$ is an isomorphism which would be absurd, because T is strictly singular.

Proof of claim: Because T bounded, $\forall i_0, \ldots, i_n \in \mathbb{R}

\| \sum_{i=1}^{n} a_i x_i \| \leq \| T \| \sum_{i=1}^{n} |a_i| \| x_i \|.

Because $(T x_k)$ is basic for some $k > 0$, let $C > 0$ s.t.

\[\| \sum_{i=1}^{n} a_i x_i \| \geq C \| \sum_{i=1}^{n} |a_i| \| T x_i \|, \]

\[\geq \frac{\varepsilon}{2kC} \| \sum_{i=1}^{n} a_i x_i \|. \]

Thus, $(x_i) \Rightarrow (T x_i)$.

Remarks to prove (iv) i). Set $T_n : C_0 \to X, T_n = T S_n$, where $S_n : C_0 \to C_0$ canonical projections. Each T_n is finite rank, thus compact. Also, $T - T_n = T S_{(n \to m)}$ & $\| T S_{(n \to m)} \| = \text{sup} \{ \| T S_{(n \to m)} x \| : x \in B_{C_0} \} = \| T L_{n \to m} \| \to 0$. i.e. $T_n \rightarrow T$ thus T is compact as a limit of compact operators in operator norm.
Remark: One can also define w-convergence of series. If Σx_n converges unconditionally, every subseries converges weakly.

Theorem (Orlicz-Pettis): Let Σx_n be a series in a Banach space X such that any subseries converges weakly. Then, Σx_n converges unconditionally in norm.

The proof will be given later.

Remark: If a series satisfies the assumption of the above theorem then it must be WUC. Indeed, if $x \in X^*$

$$\sum_{n=1}^{\infty} x^*(x_n) = \sum_{n=1}^{\infty} x^*(x_n) + \sum_{n=1}^{\infty} x^*(x_n) < \infty.$$

Exercise: Find a series Σx_n, in a Banach space X all permutations of which converge weakly, but not all subseries of which converge weakly.

Hint: if $c_0 \subseteq X$ then such a series does not exist.