Banach spaces, lecture 13, 9/25/2019

Subspaces of c_0, c_0 (part 2) & complemented subspaces of C_0 & ℓ_p, $1 \leq p < \infty$ (part 2)

Theorem: Let $X = \ell_p$, $1 \leq p < \infty$ or $X = c_0$. Every closed infinite dimensional subspace of X contains a subspace isomorphic to X complemented in X.

Corollary: The spaces c_0, ℓ_p don't contain infinite dimensional reflexive subspaces.

Recall: If X,Y are B spaces, a $T \in \mathcal{L}(X,Y)$ is called a compact operator if $\overline{T(B_X)}$ is a compact subset of Y.

Theorem (Pitt): Let $1 \leq p < q < \infty$, $X = \ell_p$ and $Y = c_0$. Then for every closed subspace Z of Y and every $T \in \mathcal{L}(Z, X)$, T is a compact operator.

Proof: Assume $T(B_Z)$ is not relatively compact. Then $\exists \varepsilon > 0$ and $(z_n)_n$ in B_Z s.t. $\forall n \in \mathbb{N}, \|Tz_n - Tz_m\| > \varepsilon$.

Observe that for $n \in \mathbb{N}, \|z_n - z_m\| \geq \frac{\varepsilon}{\|T\|}$.

Denote (e_i); the c.u.b of X, (\hat{e}_i); the c.u.b of X.

By a diagonal argument, pass to a subseq. $(y_n)_n$ of $(z_n)_n$ s.t. $\forall i \in \mathbb{N}, \lim_{n \to \infty} e_i(y_n) = a_i$ and $\lim_{n \to \infty} e_i^*(Tz_n) = b_i$.
both exist. Define \(X_0 = Y_n - Y_{n-1} \). Then

\[(X_n)\] is seminormalized \(\left(\frac{\varepsilon}{\|x\|} \leq \inf \|x_n\| , \sup \|x_n\| \leq 2 \right) \)

\& \(\forall \varepsilon > 0 \lim \varepsilon_i (X_n) = 0 \).

Also, \((T_x)\) is seminormalized \(\left(\varepsilon \leq \inf \|T_x\| , \sup \|T_x\| \right) \)

\& \(\forall \varepsilon > 0 \lim \varepsilon_i (T_x) = 0 \).

By passing to subsequences twice, we may assume \((X_n)\) \& \((T_x)\).

Thus, \(\exists C, D > 0 \text{ s.t. } \forall n \in \mathbb{N} \quad \|T_x\| \geq \|x_n\| \geq \|Tx_n\| \geq \frac{1}{D} \|x_n\| \quad \frac{1}{D} \) \n

\(\text{thus } \forall n \in \mathbb{N} \quad \frac{1}{q} - \frac{1}{p} \leq DC\|x\| \) \text{, which is absurd because } 1 \leq q < \infty \).

Corollary: If \(X = l^p, 1 \leq p < \infty \), \& \(Y = l^q, 1 < q < \infty \) or \(Y = C_0 \),

then, \(X, Y \) are totally incomparable.

Proof: \(X \hookrightarrow l^p, l \leq p \leq \infty \), \& \(Y \hookrightarrow l^q, \rho < q < \infty \) or \(Y = C_0 \),

then, \(X, Y \) are finitely dimensional.

Def: Let \(X, Y \) be B-spaces. A \(\text{TC}(X, Y) \) is called completely continuous if \(X \) is normed \((X, \|\cdot\|_X) \) in \(X, T_x, \|\cdot\|_X \).

Exercise: Let \(X, Y \) be B-spaces \& \(\text{TE}(X, Y) \).

i) Show that \(T \) is completely continuous

ii) Under the assumption that \(X \) is reflexive, show that \(T \) is compact if and only if \(H \) is compactly continuous.
Definition: Let X, Y be B-spaces. A T ∈ $L(X, Y)$ is called a strictly singular operator if for every closed infinite dimensional subspace X_0 of X, $T|_{X_0}: X_0 \to Y$ is not an embedding.

Example: compact operators are strictly singular.

Exercise: Let X, Y be B-spaces & $T \in L(X, Y)$. Then
\[i) T \text{ is strictly singular} \]
\[ii) \forall X_0 \subseteq X \text{ inf. dim. } \|T\| > 0 \exists x_0 \in X \text{ s.t. } \|Tx_0\| < \|T\| \|x_0\|. \]

Exercise: Let $X = l_p$, $1 \leq p < \infty$ and $Y = l_q$, $p < q < \infty$ or $Y = c_0$. Then for every $X_0 \subseteq X$ & every $T \in L(X_0, Y)$, T is strictly singular.

Theorem (Pelczynski) Let $X = l_p$, $1 \leq p < \infty$, or $X = c_0$.
Every infinite dimensional complemented subspace of X is isomorphic to X.

An X with the above property is called a prime space. (The proof will begin later.)

Def: Let X, Y be B-spaces & $1 \leq p \leq \infty$. Define $X \oplus_p Y = \{ \text{all pairs } (x, y) \in X \times Y \text{ with } \|x\|_p + \|y\|_q \leq \|x\|_p + \|y\|_q \}$
\[\|x\|_p = \max \{\|x\|_p, 1 \}
\]

Prop: Let X be a B-space s.t. $X = Y \oplus Z$. Then $1 \leq p \leq \infty$
\[X \cong Y \oplus_p Z. \]

Proof: Let $P: X \to X$ be a projection onto Y with $\text{ker}(P) = Z$ & define $T: X \to Y \oplus_p Z$ by $T_x = (P(x), (I - P)(x))$. Then $\|T\| = \|T\|_p \leq 3 \|P\| \|I - P\|$. \]
Definition: Let X be a B-space. We define the B-spaces

i) $l^p(X)$, $1 \leq p < \infty$ as all seq. $\mathbf{x} = (x(n))_n$ in X

with $||\mathbf{x}||_{l^p(X)} = \left(\sum_{n=1}^{\infty} ||x(n)||^p \right)^{1/p}$ finite.

ii) $c_0(X)$ as all $\mathbf{x} = (x(n))_n$ in X with $\lim_{n \to \infty} ||x(n)|| = 0$

and $||\mathbf{x}||_{c_0(X)} = \max_n ||x(n)||$.

iii) $c_0^\infty(X)$ as all $\mathbf{x} = (x(n))_n$ in X with $\lim_{n \to \infty} ||x(n)|| = \sup_{n \in \mathbb{N}} ||x(n)|| < \infty$.

Remark: $l^p(l^p) \equiv l^p$, for $1 \leq p < \infty$ & $C_0 \equiv C_0(C_0)$.

Take the case $X = l^p$, $1 \leq p < \infty$. We will define an onto linear isometry $T: l^p(l^p) \to l^p(l^p)$. Write $X = \bigcup_{k=1}^{\infty} N_k$, where the N_k are pairwise disjoint and each is infinite.

Write each N_k as $N_k = \{n_1^k < n_2^k < n_3^k < \ldots < n_i^k < \ldots \}$

and for each $x = (x(i))_i \in l^p$ define $\forall k \in \mathbb{N}$, $(T_x)(k)$ $\in l^p$ as $(T_x)(k) = (x(n_i^k))_i$. If $T_x = ((T_x)(k))_k$

we have $||x||^p = \sum_{i=1}^{\infty} |x(i)|^p = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} x(n_i^k)^p = \sum_{k=1}^{\infty} ||(T_x)(k)||^p = ||Tx||_{l^p(l^p)}^p$. It is also easy to find $\forall \mathbf{x} = (x(n)) \in l^p(l^p)$ an $y \in l^p$ s.t. $Ty = \mathbf{x}$.