Recall: $C[0,1] = \{ f: [0,1] \to \mathbb{R} \text{ continuous} \}$ with $\| f \|_\infty = \max_{t \in [0,1]} |f(t)|$

Theorem (Banach-Mazur): Let X be a separable B-space. Then X embeds isometrically into $C[0,1]$, i.e. $\exists T: X \to C[0,1]$ linear isometry.

Comment: The closed subspaces of $C[0,1]$ are all separable Banach spaces.
Preparatory facts:

Def: For a compact Hausdorff top. space X, we define $C(X) = \{ f : X \to \mathbb{R} \text{ continuous} \}$. With $||f||_{\infty} = \text{sup}\{ |f(x)| : x \in X \}$ this is a Banach space.

Exercise: Let X, Y be homeomorphic compact Hausdorff spaces. Then $C(X) = C(Y)$ ($\exists T : C(X) \to C(Y)$ cont. isometric).

Proposition: Let X, Y be compact metric spaces (or just compact Hausdorff) and assume that $\exists \phi : X \to Y$ continuous & onto. Then, $\exists T : C(Y) \to C(X)$ isometric embedding.

Proof: For $f \in C(Y)$ we define $Tf \in C(X)$ as follows: $(Tf)(x) = f(\phi(x))$. This is a linear map and $||Tf||_{\infty} = \text{sup}\{ |f(\phi(x))| : x \in X \} = \text{sup}\{ |f(\phi(x))| : x \in X \} = \text{sup}\{ |f(y)| : y \in \phi(X) \} = \text{sup}\{ |f(y)| : y \in Y \} = ||f||_{\infty}$.

Proposition: Let K be a closed subset of $C(0,1)$ (i.e., compact) Then \exists isometric embedding $T : C(K) \to C(0,1)$.

Proof: Take $U = [0,1] \setminus K$ open. Write $U = \bigcup (a_n, b_n)$ where (a_n, b_n) are disjoint open intervals. For $f : K \to K$ cont. define $(Tf)(x) : [0,1] \to [0,1]$ follows: if $t \in K$ then $(Tf)(t) = f(t)$ if $t \notin K$ then $t \in (a_n, b_n)$ for some n. Define
Define \(f(t) = \frac{(t-a_n)}{b_n} f(b_n) + \frac{(b_n-t)}{b_n} f(a_n) \)

Then \(\|Tf\| = \|f\| \).

Proposition: Let \(X \) be a compact metric space. The \(X \) is homeomorphic to a subset of \(C_0(1)^\mathbb{N} \).

Proof: We may assume \(\varnothing \neq \delta d(x, y) \leq 1 \forall \ x, y \in X \). Take a countable dense \((x_n)_n \in X \) and define \(j : X \to C_0(1)^\mathbb{N} \) by \(j(x) = (d(x, x_n))_n \). Then \(j \) is a continuous bijection, i.e., \(j \) is a homeomorphism.

Proposition: \(\exists \phi : \{0, 1\}^\mathbb{N} \to C_0(1)^\mathbb{N} \) onto \& onto.

Proof: \(\exists \phi_0 : \{0, 1\}^\mathbb{N} \to C_0(1)^\mathbb{N} \) onto with \(\phi_0(x) = \sum_{n=1}^{\infty} \frac{x(n)}{2^n} \).

Take \(\phi : \{0, 1\}^\mathbb{N} \to \{0, 1\}^\mathbb{N} \) by \(\phi(y) = (\phi_0(y(x)))_n \) which is onto onto. \(2 : \{0, 1\}^\mathbb{N} \to \{0, 1\}^\mathbb{N} \).

Proposition: \(\exists K \subset C_0(1) \), \(K \approx \{0, 1\}^\mathbb{N} \)

Proof: define \(\phi : \{0, 1\}^\mathbb{N} \to [0, 1] \) with

\[
\phi(x) = \sum_{n=1}^{\infty} \frac{2x(n)}{3^n}
\]
Proposition: Let \(X \) be a compact metric space. Then \(C(X) \) embeds isometrically into \(C_{0,1} \).

Proof: We may assume \(X \) is a closed subset of \([0,1] \). Take \(\Phi: [0,1] \to [0,1] \) onto and define

\[
Y = \Phi'(X), \quad \text{closed (compact) subset of } [0,1],
\]

which we may identify with a closed subset of \([0,1] \). Because \(\Phi: Y \to X \) onto \(\Rightarrow \ C(X) \xrightarrow{\text{iso}} C(Y) \).

But \(C(Y) \xrightarrow{\text{iso}} C_{0,1} \).

Proposition: Let \(X \) be a separable B-space. Then \(X \) embeds isometrically into \(C_{0,1} \).

Proof: it suffices to find a compact metric space \(Y \) s.t. \(X \xrightarrow{\text{iso}} C(Y) \).

Let \(Y = (B_{X^+}, w^+) \) which is compact.

Remark: \(\forall x \in X, \ x: (X^+, w^+) \to \mathbb{R} \) linear form.

\[
(w^+ \text{ is the smallest sup norm on } X^+ \text{ making all } x \text{ cont.})
\]

\[
\Rightarrow \ X \xrightarrow{\text{iso}} B_{X^+} \subseteq C(Y) \text{ and }
\]

\[
\|x\|_{w^+} = \sup \|x^*(x)\|_{X^*} = \|x\|_{B_{X^+}} \|w^+\|_{\infty}. \text{ Then, } T: X \to C(Y)
\]

given by \(Tx = \|x\|_{B_{X^+}} \) is a linear isometry. Remains to recall that when \(X \) is separable, \((B_{X^+}, w^+) \)
is metrizable. To see this, take \(X^0 \) dense in \(B_X \) and define \(T \) on \(X^* \) to be the smallest topology making all \(x_{i,n} \in X^0 \) continuous. Then \(T \) is metrizable \& \(T \subset w^* \)

\(B_{X^1} \) (\(B_{X^1} \)) is compact and \(id : (B_{X^1}) - (B_{X^1}) \) is a continuous bijection, i.e., it is a homeomorphism.

Exercise: Let \((X_i, T) \) be a compact Hausdorff space. Define \(\delta : X \rightarrow (C(X))^* \) as follows:

\[(d(x))(f) = f(x)\]

i) Show that \(\delta \) is well defined, i.e., \(\delta(x) \in (C(X))^* \) \(\forall x \in X \) and that \(||\delta(x)|| = 1 \) \(\forall x \in X \).

ii) Show that \(\delta : (X_i, T) \rightarrow ((C(X))^*, w^*) \) is continuous \& 1-1.

iii) Deduce that \((X_i, T) \) is metrizable if and only if \(C(X) \) is separable.