Mitigating the Impact of Endogeneity in Mental Healthcare Data via Multilevel Models

Paul H. Johnson, Jr.

Ph.D. Candidate
University of Wisconsin – Madison
School of Business

Research funded by the National Institute of Mental Health:
PHS Grant Number: 2 T32 MH18029-22
Purpose

- To examine whether racial disparities occur in the utilization of inpatient mental health services
- To introduce the health services literature to advanced multilevel modeling techniques
Racial Disparities in Mental Health

- Racial disparities: Differences in healthcare treatments and outcomes by race after considering all other individual and organizational factors.

- The National Research Council (1997) and Institute of Medicine (2002) have found extensive evidence of racial disparities in healthcare treatments and outcomes.

- Racial disparities have been attributed to (unobserved):
 - Socio-economic status
 - Health insurance coverage
 - Patient preferences / cultural beliefs
 - Physician bias / discrimination
 - Quality of the local healthcare system
Outline

1. Background
 - Multilevel Models
 - Endogeneity
 - Data

2. Multilevel Model Endogeneity Analysis
 - Two Level Model
 - Estimation Strategies
 - Empirical Results

3. Summary
Outline

1. Background
 - Multilevel Models
 - Endogeneity
 - Data

2. Multilevel Model Endogeneity Analysis
 - Two Level Model
 - Estimation Strategies
 - Empirical Results

3. Summary
Outline

1 Background
 - Multilevel Models
 - Endogeneity
 - Data

2 Multilevel Model Endogeneity Analysis
 - Two Level Model
 - Estimation Strategies
 - Empirical Results

3 Summary
Multilevel Models

- Modeling technique originally used in educational research, now used in other fields (Raudenbush & Bryk 2002, Goldstein 2003)
- Can be used when data has an inherent hierarchical structure, such as students within schools or patients within hospitals
- Advantages of multilevel models include:
 - More precise estimates of fixed effects (regression coefficients)
 - Provide appropriate standard errors for confidence intervals and hypothesis tests
Endogeneity

- Correlation of observed model variables with model random errors (Wooldridge 2002)
- Conceive of endogeneity as omitted variables
- Omitted variables can bias fixed effects estimates of observed model variables and lead to incorrect inferences
Data

- Healthcare Cost and Utilization Project’s Nationwide Inpatient Sample (NIS)
 - Sponsored by the Agency for Healthcare Research and Quality
- Area Resource File (ARF)
 - Sponsored by the Bureau of Health Professions
- Sample: 97,378 adults (age 18 to 64) admitted to a hospital in 2003 and discharged with a mental illness, from 331 hospitals and 231 counties
- Goal: use data to determine whether there are racial disparities in inpatient mental healthcare utilization, measured by hospital total charges (TOTCHG)
Variables and Descriptions

Discharge-Level
- Hospital total charges
- Age at admission
- Gender of patient
- **Race of patient**
- Primary expected payer
- APR-DRG code
- Risk of mortality subclass
- Severity subclass

Hospital-Level
- Bed size of hospital
- Ownership of hospital
- Location of hospital
- Teaching status of hospital

County-Level
- HPSA primary care physician code
- HPSA mental health professional code
- Total hospital admission rate
- Per capita income
Distribution of TOTCHG

![Distribution of Total Charges](image-url)
Distribution of LN(TOTCHG)
Two Level Model: Discharges within Hospitals

- Discharge Model:
 \[y_{hd} = \mathbf{X}_{hd}(1) \beta_1 + \beta_h^{(1)} + \epsilon_{hd}^{(1)} \]

- Hospital Model:
 \[\beta_h^{(1)} = \mathbf{X}_h^{(2)} \beta_2 + \epsilon_h^{(2)} \]

- Combined Model:
 \[y_{hd} = \mathbf{X}_{hd}(1) \beta_1 + \mathbf{X}_h^{(2)} \beta_2 + \epsilon_{hd}^{(1)} + \epsilon_h^{(2)} \]

- Let \(\mathbf{X}_{hd} = (\mathbf{X}_{hd}^{(1)} : \mathbf{X}_h^{(2)}) \), \(\beta = (\beta_1' : \beta_2')' \), \(\delta_{hd} = \epsilon_{hd}^{(1)} + \epsilon_h^{(2)} \), \(\mathbf{V}_h = \text{var}(\delta_h) \)

 Fully specify the two level model as:
 \[\mathbf{V}_h^{-1/2} y_h = \mathbf{V}_h^{-1/2} \mathbf{X}_h \beta + \mathbf{V}_h^{-1/2} \delta_h \]
Two Level Model: Discharges within Hospitals

- **Discharge Model:**
 \[
 y_{hd} = X_{hd}^{(1)} \beta_1 + \beta_h^{(1)} + \epsilon_{hd}^{(1)}
 \]

- **Hospital Model:**
 \[
 \beta_h^{(1)} = X_h^{(2)} \beta_2 + \epsilon_h^{(2)}
 \]

- **Combined Model:**
 \[
 y_{hd} = X_{hd}^{(1)} \beta_1 + X_h^{(2)} \beta_2 + \epsilon_{hd}^{(1)} + \epsilon_h^{(2)}
 \]

- Let \(X_{hd} = (X_{hd}^{(1)} : X_h^{(2)}) \), \(\beta = (\beta_1 : \beta_2)' \), \(\delta_{hd} = \epsilon_{hd}^{(1)} + \epsilon_h^{(2)} \), \(V_h = var(\delta_h) \)

 Fully specify the two level model as:
 \[
 V_h^{-1/2} y_h = V_h^{-1/2} X_h \beta + V_h^{-1/2} \delta_h
 \]
Two Level Model: Discharges within Hospitals

- Discharge Model:
 \[y_{hd} = X_{hd}^{(1)} \beta_1 + \beta_h^{(1)} + \epsilon_{hd}^{(1)} \]

- Hospital Model:
 \[\beta_h^{(1)} = X_h^{(2)} \beta_2 + \epsilon_h^{(2)} \]

- Combined Model:
 \[y_{hd} = X_{hd}^{(1)} \beta_1 + X_h^{(2)} \beta_2 + \epsilon_{hd}^{(1)} + \epsilon_h^{(2)} \]

Let \(X_{hd} = (X_{hd}^{(1)} : X_h^{(2)}) \), \(\beta = (\beta_1' : \beta_2')' \), \(\delta_{hd} = \epsilon_{hd}^{(1)} + \epsilon_h^{(2)} \), \(V_h = \text{var}(\delta_h) \)

Fully specify the two level model as:
\[V_h^{-1/2} y_h = V_h^{-1/2} X_h \beta + V_h^{-1/2} \delta_h \]
Two Level Model: Discharges within Hospitals

- Discharge Model:
 \[y_{hd} = X_{hd}^{(1)} \beta_1 + \beta_h^{(1)} + \epsilon_{hd}^{(1)} \]

- Hospital Model:
 \[\beta_h^{(1)} = X_h^{(2)} \beta_2 + \epsilon_h^{(2)} \]

- Combined Model:
 \[y_{hd} = X_{hd}^{(1)} \beta_1 + X_h^{(2)} \beta_2 + \epsilon_{hd}^{(1)} + \epsilon_h^{(2)} \]

Let \(X_{hd} = (X_{hd}^{(1)} : X_h^{(2)}) \), \(\beta = (\beta_1' : \beta_2')' \), \(\delta_{hd} = \epsilon_{hd}^{(1)} + \epsilon_h^{(2)} \), \(V_h = \text{var}(\delta_h) \)

Fully specify the two level model as:

\[V_h^{-1/2} y_h = V_h^{-1/2} X_h \beta + V_h^{-1/2} \delta_h \]

- Typically, analysts estimate fixed effects β using the ordinary least squares (OLS) estimator ($V_h = \sigma^2 I_h$):

$$b_{OLS} = \left(\sum_h X'_h X_h \right)^{-1} \sum_h X'_h y_h$$

- However, the most efficient unbiased estimator of β accounts for the hierarchical structure of the data, the generalized least squares (GLS) estimator:

$$b_{GLS} = \left(\sum_h X'_h V_h^{-1} X_h \right)^{-1} \sum_h X'_h V_h^{-1} y_h$$
Typically, analysts estimate fixed effects β using the ordinary least squares (OLS) estimator ($V_h = \sigma^2 I_h$):

$$b_{\text{OLS}} = \left(\sum_h X'_h X_h \right)^{-1} \sum_h X'_h y_h$$

However, the most efficient unbiased estimator of β accounts for the hierarchical structure of the data, the generalized least squares (GLS) estimator:

$$b_{\text{GLS}} = \left(\sum_h X'_h V_h^{-1} X_h \right)^{-1} \sum_h X'_h V_h^{-1} y_h$$
Introducing Omitted Variables

- At hospital-level, omitted variables: hospital capacity, physician practice patterns, healthcare demand and supply, community-level socio-economic status, and the quality of the healthcare system
 - Instead of $\epsilon_h^{(2)}$, model contains $\epsilon_h^{(2)*} + u_h^{(2)}$
- At discharge-level, race-related omitted variables: socio-economic status, health insurance, patient preferences, and physician bias
 - Instead of $WHITE_{hd}$, model contains $WHITE_{hd}^{*} + u_h^{(1WHITE)}$
 - $u_h^{(1j)} = \text{omitted effects for race } j \text{ and hospital } h$
Introducing Omitted Variables

- At hospital-level, omitted variables: hospital capacity, physician practice patterns, healthcare demand and supply, community-level socio-economic status, and the quality of the healthcare system
 - Instead of $\epsilon_h^{(2)}$, model contains $\epsilon_h^{(2)*} + u_h^{(2)}$

- At discharge-level, race-related omitted variables: socio-economic status, health insurance, patient preferences, and physician bias
 - Instead of $WHITE_{hd}$, model contains $WHITE_{hd}^{*} + u_h^{(1WHITE)}$
 - $u_h^{(1j)}$ = omitted effects for race j and hospital h
Introducing Omitted Variables

- At hospital-level, omitted variables: hospital capacity, physician practice patterns, healthcare demand and supply, community-level socio-economic status, and the quality of the healthcare system
 - Instead of $\epsilon^{(2)}_h$, model contains $\epsilon^{(2)*}_h + u^{(2)}_h$
- At discharge-level, race-related omitted variables: socio-economic status, health insurance, patient preferences, and physician bias
 - Instead of $WHITE_{hd}$, model contains $WHITE^{*}_{hd} + u^{(1WHITE)}_h$
 - $u^{(1j)}_h = $ omitted effects for race j and hospital h
Introducing Omitted Variables

At hospital-level, omitted variables: hospital capacity, physician practice patterns, healthcare demand and supply, community-level socio-economic status, and the quality of the healthcare system

- Instead of $\epsilon_h^{(2)}$, model contains $\epsilon_h^{(2)*} + u_h^{(2)}$

At discharge-level, race-related omitted variables: socio-economic status, health insurance, patient preferences, and physician bias

- Instead of WHITE_{hd}, model contains $\text{WHITE}_{hd}^{*} + u_h^{(1\text{WHITE})}$

- $u_h^{(1j)} = \text{omitted effects for race } j \text{ and hospital } h$
Introducing Omitted Variables

- At hospital-level, omitted variables: hospital capacity, physician practice patterns, healthcare demand and supply, community-level socio-economic status, and the quality of the healthcare system
 - Instead of $\epsilon_h^{(2)}$, model contains $\epsilon_h^{(2)*} + u_h^{(2)}$

- At discharge-level, race-related omitted variables: socio-economic status, health insurance, patient preferences, and physician bias
 - Instead of $WHITE_{hd}$, model contains $WHITE_{hd}^* + u_h^{(1WHITE)}$
 - $u_h^{(1j)} = \text{omitted effects for race } j \text{ and hospital } h$
Estimation with Omitted Variables

- If only \(u_h^{(2)} \), can use *fixed effects estimation* (Kim & Frees 2006) that removes both observed and omitted hospital variables to estimate discharge fixed effects \(\beta_1 \):

\[
b_{1FE} = \left(\sum_h X_h^{(1)'} V_h^{-1/2} Q_h V_h^{-1/2} X_h^{(1)} \right) - \sum_h X_h^{(1)'} V_h^{-1/2} Q_h V_h^{-1/2} y_h
\]

- Again, if only \(u_h^{(2)} \), can obtain unbiased estimates of all fixed effects \(\beta \) with *instrumental variables (IV) estimation* (Kim & Frees 2006):

\[
b_{IV} = \left(\sum_h X_h' V_h^{-1/2} P(H_h) V_h^{-1/2} X_h \right) - \sum_h X_h' V_h^{-1/2} P(H_h) V_h^{-1/2} y_h
\]

- If both \(u_h^{(2)} \) and \(u_h^{(1i)} \), can only obtain estimates of \(\beta_{1NR}^{(1NR)} \), the discharge variables other than race: \(b_{1FE}^{(1NR)} = \)

\[
= \left(\sum_h X_h^{(1NR)'} V_h^{-1/2} Q_h V_h^{-1/2} X_h^{(1NR)} \right) - \sum_h X_h^{(1NR)'} V_h^{-1/2} Q_h V_h^{-1/2} y_h
\]
Estimation with Omitted Variables

- If only $u_h^{(2)}$, can use fixed effects estimation (Kim & Frees 2006) that removes both observed and omitted hospital variables to estimate discharge fixed effects β_1:

$$b_{1FE} = \left(\sum_h X_h^{(1)'} V_h^{-1/2} Q_h V_h^{-1/2} X_h^{(1)} \right) - \sum_h X_h^{(1)'} V_h^{-1/2} Q_h V_h^{-1/2} y_h$$

- Again, if only $u_h^{(2)}$, can obtain unbiased estimates of all fixed effects β with instrumental variables (IV) estimation (Kim & Frees 2006):

$$b_{IV} = \left(\sum_h X_h' V_h^{-1/2} P(H_h) V_h^{-1/2} X_h \right) - \sum_h X_h' V_h^{-1/2} P(H_h) V_h^{-1/2} y_h$$

- If both $u_h^{(2)}$ and $u_h^{(1i)}$, can only obtain estimates of $\beta_1^{(1NR)}$, the discharge variables other than race:

$$b_{1FE*}^{(1NR)} = \left(\sum_h X_h^{(1NR)'} V_h^{-1/2} Q^*_h V_h^{-1/2} X_h^{(1NR)} \right) - \sum_h X_h^{(1NR)'} V_h^{-1/2} Q^*_h V_h^{-1/2} y_h$$
Estimation with Omitted Variables

- If only $u_h^{(2)}$, can use *fixed effects estimation* (Kim & Frees 2006) that removes both observed and omitted hospital variables to estimate discharge fixed effects β_1:

$$b_{1FE} = \left(\sum_h X_h^{(1)'} V_h^{-1/2} Q_h V_h^{-1/2} X_h^{(1)} \right) - \sum_h X_h^{(1)'} V_h^{-1/2} Q_h V_h^{-1/2} y_h$$

- Again, if only $u_h^{(2)}$, can obtain unbiased estimates of **all** fixed effects β with *instrumental variables (IV) estimation* (Kim & Frees 2006):

$$b_{IV} = \left(\sum_h X_h' V_h^{-1/2} P(H_h) V_h^{-1/2} X_h \right) - \sum_h X_h' V_h^{-1/2} P(H_h) V_h^{-1/2} y_h$$

- If both $u_h^{(2)}$ and $u_h^{(1)}$, can only obtain estimates of $\beta_1^{(1NR)}$, the discharge variables other than race: $b_{1FE*}^{(1NR)} = $

$$= \left(\sum_h X_h^{(1NR)'} V_h^{-1/2} Q_h^* V_h^{-1/2} X_h^{(1NR)} \right) - \sum_h X_h^{(1NR)'} V_h^{-1/2} Q_h^* V_h^{-1/2} y_h$$
OLS Model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Estimate</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE</td>
<td>-0.186</td>
<td>-9.581</td>
</tr>
<tr>
<td>BLACK</td>
<td>-0.191</td>
<td>-9.505</td>
</tr>
<tr>
<td>HISPANIC</td>
<td>0.087</td>
<td>4.054</td>
</tr>
<tr>
<td>ASIAN</td>
<td>0.056</td>
<td>1.758</td>
</tr>
<tr>
<td>NAT_AMER</td>
<td>-0.075</td>
<td>-1.239</td>
</tr>
</tbody>
</table>

GLS Model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Estimate</th>
<th>t-Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE</td>
<td>0.035</td>
<td>1.769</td>
</tr>
<tr>
<td>BLACK</td>
<td>0.015</td>
<td>0.692</td>
</tr>
<tr>
<td>HISPANIC</td>
<td>0.000</td>
<td>0.014</td>
</tr>
<tr>
<td>ASIAN</td>
<td>0.090</td>
<td>3.151</td>
</tr>
<tr>
<td>NAT_AMER</td>
<td>0.069</td>
<td>1.215</td>
</tr>
</tbody>
</table>

Covariance Components

<table>
<thead>
<tr>
<th>Covariance Components</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{var}(\epsilon))</td>
<td>0.7150</td>
<td>0.003</td>
</tr>
<tr>
<td>(\text{var}(\epsilon_{hd}^{(1)}))</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\text{var}(\epsilon_{h}^{(2)}))</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Covariance Components</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{var}(\epsilon_{hd}^{(1)}))</td>
<td>0.4704</td>
<td>0.002</td>
</tr>
<tr>
<td>(\text{var}(\epsilon_{h}^{(2)}))</td>
<td>0.2730</td>
<td>0.025</td>
</tr>
</tbody>
</table>

Model Fit Indices

<table>
<thead>
<tr>
<th>Model Fit Indices</th>
<th>OLS Model</th>
<th>GLS Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-2(\text{Max LogL}))</td>
<td>243,683.8</td>
<td>203,940.6</td>
</tr>
<tr>
<td>AIC</td>
<td>243,747.8</td>
<td>204,006.6</td>
</tr>
</tbody>
</table>
Comparison of Race Fixed Effects Estimates: GLS vs Endogeneity Estimators

<table>
<thead>
<tr>
<th>Variables</th>
<th>GLS</th>
<th>FE</th>
<th>IV</th>
<th>FE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHITE</td>
<td>0.035</td>
<td>1.769</td>
<td>0.036</td>
<td>1.822</td>
</tr>
<tr>
<td>BLACK</td>
<td>0.015</td>
<td>0.692</td>
<td>0.016</td>
<td>0.734</td>
</tr>
<tr>
<td>HISPANIC</td>
<td>0.000</td>
<td>0.014</td>
<td>-0.000</td>
<td>-0.006</td>
</tr>
<tr>
<td>ASIAN</td>
<td>0.090</td>
<td>3.151</td>
<td>0.090</td>
<td>3.142</td>
</tr>
<tr>
<td>NAT_AMER</td>
<td>0.069</td>
<td>1.215</td>
<td>0.069</td>
<td>1.209</td>
</tr>
</tbody>
</table>
Empirical Results

Comparison of APR-DRG Fixed Effects Estimates: GLS vs Endogeneity Estimators

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRG740</td>
<td>0.906</td>
<td>8.918</td>
<td>0.907</td>
<td>8.873</td>
<td>0.906</td>
<td>8.894</td>
<td>0.909</td>
<td>9.052</td>
</tr>
<tr>
<td>DRG750</td>
<td>0.363</td>
<td>4.553</td>
<td>0.362</td>
<td>4.487</td>
<td>0.364</td>
<td>4.548</td>
<td>0.362</td>
<td>4.396</td>
</tr>
<tr>
<td>DRG751</td>
<td>0.029</td>
<td>0.361</td>
<td>0.027</td>
<td>0.332</td>
<td>0.029</td>
<td>0.367</td>
<td>0.029</td>
<td>0.348</td>
</tr>
<tr>
<td>DRG752</td>
<td>-0.129</td>
<td>-1.380</td>
<td>-0.129</td>
<td>-1.372</td>
<td>-0.128</td>
<td>-1.371</td>
<td>-0.125</td>
<td>-1.308</td>
</tr>
<tr>
<td>DRG753</td>
<td>0.171</td>
<td>2.129</td>
<td>0.170</td>
<td>2.089</td>
<td>0.172</td>
<td>2.131</td>
<td>0.170</td>
<td>2.050</td>
</tr>
<tr>
<td>DRG754</td>
<td>-0.256</td>
<td>-3.174</td>
<td>-0.258</td>
<td>-3.160</td>
<td>-0.256</td>
<td>-3.163</td>
<td>-0.256</td>
<td>-3.070</td>
</tr>
<tr>
<td>DRG755</td>
<td>-0.323</td>
<td>-4.004</td>
<td>-0.325</td>
<td>-3.987</td>
<td>-0.323</td>
<td>-3.991</td>
<td>-0.323</td>
<td>-3.885</td>
</tr>
<tr>
<td>DRG756</td>
<td>-0.073</td>
<td>-0.879</td>
<td>-0.079</td>
<td>-0.943</td>
<td>-0.075</td>
<td>-0.901</td>
<td>-0.080</td>
<td>-0.936</td>
</tr>
<tr>
<td>DRG757</td>
<td>0.201</td>
<td>2.229</td>
<td>0.196</td>
<td>2.163</td>
<td>0.200</td>
<td>2.224</td>
<td>0.200</td>
<td>2.167</td>
</tr>
<tr>
<td>DRG758</td>
<td>0.035</td>
<td>0.376</td>
<td>0.033</td>
<td>0.354</td>
<td>0.035</td>
<td>0.378</td>
<td>0.038</td>
<td>0.399</td>
</tr>
<tr>
<td>DRG759</td>
<td>0.536</td>
<td>4.243</td>
<td>0.537</td>
<td>4.266</td>
<td>0.537</td>
<td>4.223</td>
<td>0.531</td>
<td>4.278</td>
</tr>
<tr>
<td>DRGRM</td>
<td>0.048</td>
<td>3.119</td>
<td>0.048</td>
<td>3.094</td>
<td>0.048</td>
<td>3.100</td>
<td>0.049</td>
<td>3.141</td>
</tr>
<tr>
<td>DRGSEV</td>
<td>0.257</td>
<td>20.284</td>
<td>0.256</td>
<td>20.267</td>
<td>0.257</td>
<td>20.286</td>
<td>0.256</td>
<td>20.194</td>
</tr>
</tbody>
</table>
Summary of Current Research

- Multilevel modeling has been applied to the examination of inpatient healthcare utilization outcomes and racial disparities.
- Current multilevel model-based methods, fixed effects and IV, have been utilized in the presence of omitted variables.
- Empirical analysis found no evidence of significant racial disparities.