Let \mathbf{u} be a vector in \mathbb{R}^3.
Let u be a vector in \mathbb{R}^3.

- A linear combination of u is any vector tu.

- The span of u is the set of all vectors tu: $\text{span}\{u\} = \{tu \mid t \in \mathbb{R}\}$

- A line parallel to u which goes through the origin $\text{span}\{u\}$ is a subspace.
Let \mathbf{u} be a vector in \mathbb{R}^3.

- A **linear combination** of \mathbf{u} is any vector $t\mathbf{u}$.
- Any vector parallel to \mathbf{u}.
Let u be a vector in \mathbb{R}^3.

- a **linear combination** of u is any vector tu
 - any vector parallel to u.
- the **span** of u is the set of **ALL** vectors tu: $\text{span}\{u\} = \{tu | t \in \mathbb{R}\}$
Let \(\mathbf{u} \) be a vector in \(\mathbb{R}^3 \).

- a **linear combination** of \(\mathbf{u} \) is any vector \(t \mathbf{u} \)
 - any vector parallel to \(\mathbf{u} \).
- the **span** of \(\mathbf{u} \) is the set of ALL vectors \(t \mathbf{u} \): \(\text{span}\{\mathbf{u}\} = \{ t \mathbf{u} \mid t \in \mathbb{R} \} \)
 - a line parallel to \(\mathbf{u} \) which goes through the origin
Let \mathbf{u} be a vector in \mathbb{R}^3.

- a **linear combination** of \mathbf{u} is any vector $t\mathbf{u}$
 - any vector parallel to \mathbf{u}.
- the **span** of \mathbf{u} is the set of ALL vectors $t\mathbf{u}$: $\text{span}\{\mathbf{u}\} = \{t\mathbf{u} \mid t \in \mathbb{R}\}$
 - a line parallel to \mathbf{u} which goes through the origin
- $\text{span}\{\mathbf{u}\}$ is a **subspace**.
The span of the vector \mathbf{u} is the line $\overrightarrow{OP} = t\mathbf{u}$.
Let \mathbf{u}_1 and \mathbf{u}_2 be two vectors in \mathbb{R}^3.

A linear combination of \mathbf{u}_1 and \mathbf{u}_2 is any vector $s \mathbf{u}_1 + t \mathbf{u}_2$.

The span of \mathbf{u}_1 and \mathbf{u}_2 is the set of all vectors $s \mathbf{u}_1 + t \mathbf{u}_2$.

If \mathbf{u}_1 and \mathbf{u}_2 are parallel, then the span is a line parallel to \mathbf{u}_1 and \mathbf{u}_2 that passes through the origin.

If \mathbf{u}_1 and \mathbf{u}_2 are not parallel, then the span is a plane that contains \mathbf{u}_1 and \mathbf{u}_2 and passes through the origin.

The span $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a subspace.
Let \mathbf{u}_1 and \mathbf{u}_2 be two vectors in \mathbb{R}^3.

- A **linear combination** of \mathbf{u}_1 and \mathbf{u}_2 is any vector $s\mathbf{u}_1 + t\mathbf{u}_2$.

The span of \mathbf{u}_1 and \mathbf{u}_2 is the set of all vectors $s\mathbf{u}_1 + t\mathbf{u}_2$.

If \mathbf{u}_1 and \mathbf{u}_2 are parallel, then the span is a line parallel to \mathbf{u}_1 and \mathbf{u}_2 that passes through the origin.

If \mathbf{u}_1 and \mathbf{u}_2 are not parallel, then the span is a plane that contains \mathbf{u}_1 and \mathbf{u}_2 and passes through the origin.

The span $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a subspace.
Let \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) be two vectors in \(\mathbb{R}^3 \).

- **a linear combination** of \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) is any vector \(s\mathbf{u}_1 + t\mathbf{u}_2 \).

- **the span** of \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) is the set of ALL vectors \(s\mathbf{u}_1 + t\mathbf{u}_2 \).
Let \mathbf{u}_1 and \mathbf{u}_2 be two vectors in \mathbb{R}^3.

- A **linear combination** of \mathbf{u}_1 and \mathbf{u}_2 is any vector $s\mathbf{u}_1 + t\mathbf{u}_2$.

- The **span** of \mathbf{u}_1 and \mathbf{u}_2 is the set of ALL vectors $s\mathbf{u}_1 + t\mathbf{u}_2$.

 If \mathbf{u}_1 and \mathbf{u}_2 are parallel, then the span is a line parallel to \mathbf{u}_1 and \mathbf{u}_2 that passes through the origin.
Let \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) be two vectors in \(\mathbb{R}^3 \).

- A **linear combination** of \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) is any vector \(s \mathbf{u}_1 + t \mathbf{u}_2 \).

- The **span** of \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) is the set of ALL vectors \(s \mathbf{u}_1 + t \mathbf{u}_2 \).

1. If \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) are parallel, then the span is a line parallel to \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) that passes through the origin.

2. If \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) are NOT parallel, then the span is a plane that contains \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) and passes through the origin.
Let \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) be two vectors in \(\mathbb{R}^3 \).

- A **linear combination** of \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) is any vector \(s\mathbf{u}_1 + t\mathbf{u}_2 \).

- The **span** of \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) is the set of ALL vectors \(s\mathbf{u}_1 + t\mathbf{u}_2 \).

1. If \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) are parallel, then the span is a line parallel to \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) that passes through the origin.

2. If \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) are NOT parallel, then the span is a plane that contains \(\mathbf{u}_1 \) and \(\mathbf{u}_2 \) and passes through the origin.

- \(\text{span}\{\mathbf{u}_1, \mathbf{u}_2\} \) is a **subspace**.
The span of noncollinear vectors u_1, u_2
Let u_1, u_2, and u_3 be three vectors in \mathbb{R}^3.

...
Let \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 be three vectors in \mathbb{R}^3.

- A **linear combination** of \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 is any vector $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

The span of \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 is the set of all vectors $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

1. If all \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 are parallel, then the span is a line that passes through the origin.

2. If \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 are not all parallel but they are in the same plane, then the span is that plane (which passes through the origin).

3. If \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 do not lie in the same plane, then the span is \mathbb{R}^3.

The span of the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a **subspace**.
Let \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 be three vectors in \mathbb{R}^3.

- A **linear combination** of \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 is any vector $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

- The **span** of \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 is the set of all vectors $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

- If all \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 are parallel, then the span is a line that passes through the origin.

- If \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 are not all parallel but they are in the same plane, then the span is that plane (which passes through the origin).

- If \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 do not lie in the same plane, then the span is \mathbb{R}^3.

The span $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is a subspace.
Let \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 be three vectors in \mathbb{R}^3.

- A **linear combination** of \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 is any vector $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

- The **span** of \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 is the set of ALL vectors $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

1. If all \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 are parallel, then the span is a line that passes through the origin.
Let \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 be three vectors in \mathbb{R}^3.

- **a linear combination** of \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 is any vector $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

- the **span** of \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 is the set of ALL vectors $a\mathbf{u}_1 + b\mathbf{u}_2 + c\mathbf{u}_3$.

1. If all \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 are parallel, then the span is a line that passes through the origin.

2. If \mathbf{u}_1, \mathbf{u}_2, and \mathbf{u}_3 are not all parallel but they are in the same plane, then the span is that plane (which passes through the origin).
Let u_1, u_2, and u_3 be three vectors in \mathbb{R}^3.

- A **linear combination** of u_1, u_2, u_3 is any vector $au_1 + bu_2 + cu_3$.

- The **span** of u_1, u_2, and u_3 is the set of all vectors $au_1 + bu_2 + cu_3$.

1. If all u_1, u_2, and u_3 are parallel, then the span is a line that passes through the origin.

2. If u_1, u_2, and u_3 are not all parallel but they are in the same plane, then the span is that plane (which passes through the origin).

3. If u_1, u_2, and u_3 do not lie in the same plane, then the span is \mathbb{R}^3.

\[\text{span} \{ u_1, u_2, u_3 \} \text{ is a subspace.} \]
Let u_1, u_2, and u_3 be three vectors in \mathbb{R}^3.

- a **linear combination** of u_1, u_2, u_3 is any vector $au_1 + bu_2 + cu_3$.

- the **span** of u_1, u_2, and u_3 is the set of ALL vectors $au_1 + bu_2 + cu_3$.

1. If all u_1, u_2, and u_3 are parallel, then the span is a line that passes through the origin.

2. If u_1, u_2, and u_3 are not all parallel but they are in the same plane, then the span is that plane (which passes through the origin).

3. If u_1, u_2, and u_3 do not lie in the same plane, then the span is \mathbb{R}^3.

- $\text{span}\{u_1, u_2, u_3\}$ is a **subspace**.
The span of \(\{u_1, u_2, u_3\} \) is \(\mathbb{R}^3 \)
To determine whether vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots \mathbf{u}_k$ in \mathbb{R}^3 span a line, or a plane, or all of \mathbb{R}^3, find the RREF of the matrix $A = [\mathbf{u}_1 \mathbf{u}_2 \ldots \mathbf{u}_k]$.

- RREF of A has 0 non-zero rows \Rightarrow the span is a point (the origin)
- RREF of A has 1 non-zero row \Rightarrow the span is a line
- RREF of A has 2 non-zero rows \Rightarrow the span is a plane
- RREF of A has 3 non-zero rows \Rightarrow the span is all of \mathbb{R}^3

Calculator tip: If your matrix has more rows than columns, add zero column(s) to create a square matrix. Otherwise your calculator will report an error.
Definition: A non-empty subset V of vectors in \mathbb{R}^n is a **subspace** of \mathbb{R}^n if:

1. **Closure under vector addition**: Whenever u and v are in V, then $u + v$ is in V.
2. **Closure under multiplication by real numbers**: Whenever u is in V, then cu is in V for any real number c.
Definition: A non-empty subset V of vectors in \mathbb{R}^n is a subspace of \mathbb{R}^n if:

- whenever u and v are in V, then $u + v$ is in V, AND
Definition: A non-empty subset V of vectors in \mathbb{R}^n is a **subspace** of \mathbb{R}^n if:

- whenever u and v are in V, then $u + v$ is in V, AND
 (closure under vector addition)
Definition: A non-empty subset V of vectors in \mathbb{R}^n is a **subspace** of \mathbb{R}^n if:

- whenever \mathbf{u} and \mathbf{v} are in V, then $\mathbf{u} + \mathbf{v}$ is in V, AND
 (closure under vector addition)
- whenever \mathbf{u} is in V, then $c\mathbf{u}$ is in V for any real number c
 (closure under multiplication by real numbers)