1) Given the following Linear Program:

\[
\begin{align*}
\text{PROFIT} &= 8m_1 + 10m_2 + 16m_3 \\
\text{Subject to:} & \quad \begin{cases}
6m_1 + 3m_2 + 4m_3 \leq 32 \text{ lbs} \\
4m_1 + 1m_2 + 2m_3 \leq 10 \text{ yds} \\
14m_1 + 2m_2 + 8m_3 \leq 72 \text{ days} \\
\end{cases} \\
& \quad m_1, m_2, m_3 \geq 0
\end{align*}
\]

a) (3 pts) Place the system in a Simplex table to determine maximum profit.

\[
\begin{bmatrix}
1 & -8 & -10 & -16 & 0 & 0 & 0 & 0 \\
0 & 6 & 3 & 4 & 1 & 0 & 0 & 32 \\
0 & 4 & 1 & 2 & 0 & 1 & 0 & 10 \\
0 & 14 & 2 & 8 & 0 & 0 & 1 & 72 \\
\end{bmatrix}
\]

\[
\frac{32}{4} = 8
\]

\[
\frac{40}{8} = 5 \checkmark
\]

\[
\frac{72}{8} = 9
\]

b) (3 pts) Circle your first pivot point on the table above and show the table that results from the pivot below.

\[
\begin{bmatrix}
1 & 24 & -2 & 0 & 0 & 8 & 0 & 80 \\
0 & -2 & 1 & 0 & 1 & -2 & 0 & 12 \\
0 & 2 & \frac{1}{2} & 1 & 0 & \frac{1}{2} & 0 & 5 \\
0 & -2 & -2 & 0 & 0 & -4 & 1 & 32 \\
\end{bmatrix}
\]

\[
\frac{12}{1} = 12
\]

\[
\frac{5 \cdot \frac{2}{7} = 10 \checkmark
\]

c) (2 pts) State the Basic Feasible Solution for the table from part b above.

\[
\max = 80 \quad @ \quad (0, 0, 5, 12, 0, 32)
\]

d) (2 pts) Choose the correct final solution for this linear program from the choices below.

A) \(Z = 100 \ @ \ (0, 10, 0, 2, 0, 52) \)

B) \(Z = 100 \ @ \ (0, 10, 0) \)

C) \(Z = 80 \ @ \ (0, 12, 1, 0, 0, 56) \)

D) \(Z = 80 \ @ \ (0, 12, 1) \)

e) (3 pts) Indicate any slack that remains in the final basic feasible solution of the table.

\[
\text{There was 2 lbs unused and 52 days unused.}
\]
2) Each True or False question below is worth 3 points. Circle either T or F for you answer. If the statement is false, rewrite it as a true statement.

a) \([A^{-1}B^{-1} = (AB)^{-1}\)
\(\text{Circle Answer: T } \text{ F} \)
\(\text{If false, write corrected statement here: } \beta^{-1}A^{-1} = (AB)^{-1} \)
\(\text{or } A^{-1}\beta^{-1} = (BA)^{-1} \)

b) \((A^{-1})^{-1} = (A^t)^t\)
\(\text{Circle Answer: T } \text{ F} \)
\(\text{If only if }\) square

c) If \(A = \begin{bmatrix} 2 & -4 & 6 \\ 3 & -5 & 8 \\ -2 & 6 & -10 \end{bmatrix}\) then \(AA^{-1} = I_3\)
\(\text{Circle Answer: T } \text{ F} \)

d) Only a square matrix can have a transpose.
\(\text{Circle Answer: T } \text{ F} \)
\(\text{All have ...} \)

e) Matrix multiplication is always commutative.
\(\text{Circle Answer: T } \text{ F} \)
\(\text{Square ... always -2} \)
\(\text{comm -> asso - some} \)
\(\text{not always = never -2} \)
\(\text{not -1} \)
3) Under what conditions would the statements below always be true? (2 points each)

 Note: "iff" means "if and only if"

 a) \[A][A] = I \text{ iff} \]
 \[A \text{ is the identity} \]
 \[A \text{ is its own inverse} \]

 b) \[[A][B] = [A][C] \text{ implies } [B] = [C] \text{ iff} \]
 \[A \text{ is invertible} \]
 \[A \text{ has an inverse} \]

 c) \[[A][B] \text{ is defined iff} \]
 \[\text{The # of columns in } A \text{ is the same as the # of rows in } B \]

4) List three things that must be true about a linear program if you want to use a Simplex Table:

 a) (2 pts) \[\text{You are looking for a maximum} \]

 b) (2 pts) \[\text{All constraints are } \leq \text{ a positive number} \]

 c) (2 pts) \[\text{All variables are } \geq 0. \]
5) Matrix \(S \) below shows the number of certain TVs sold during December at the Best Buy stores in Champaign (C), Danville (D) and Peoria (P). Matrix \(R \) shows the number of items returned in January at each store.

\[
S = \begin{bmatrix}
40 & 30 & 38 & 32'' \\
20 & 42 & 30 & 37'' \\
42 & 54 & 40 & 45'' \\
\end{bmatrix} \quad \text{# of items sold}
\]

\[
R = \begin{bmatrix}
5 & 12 & 8 & \text{Champaign} \\
6 & 7 & 3 & \text{Danville} \\
4 & 10 & 4 & \text{Peoria} \\
\end{bmatrix} \quad \text{# of items returned}
\]

a) (5pts) If the 32'' sold for $650, the 37'' for $875, and the 45'' for $1200, find a matrix expressing the total retail amount sold at each store during December. For full credit, show your matrix operation and clearly label your final matrix.

\[
RP = \begin{bmatrix}
650 \\
875 \\
1200 \\
\end{bmatrix}
\]

\[
\text{RETAIL AMOUNT} = S^t \cdot RP = \begin{bmatrix}
93900 \\
121050 \\
98950 \\
\end{bmatrix}
\]

b) (5pts) After the returns were made in January, (assuming all customers were refunded their full amount), find a matrix expressing how much in retail sales each store actually make during the month of December? Clearly label your work and show your matrix operation for full credit.

\[
\begin{bmatrix}
35 & 20 & 34 & \text{32''} \\
8 & 35 & 20 & \text{37''} \\
34 & 54 & 36 & \text{45''} \\
\end{bmatrix}
\]

\[
\text{ACTUAL RETAIL VALUE SOLD IN DECEMBER OVER}
\]

\[
\begin{bmatrix}
70550 \\
107425 \\
82800 \\
\end{bmatrix}
\]

(look #) \(\cdot \) (size, \(\theta \))

\[
AS^t \cdot RP = \begin{bmatrix}
\text{ Potential } \\
\text{ Value } \\
\text{ Sold } \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
17512.50 \\
10218.75 \\
12112.50 \\
\end{bmatrix}
\]

(look size) \(\cdot \) (size, \(\theta \))

\[
\frac{1}{3}
\]

c) (3 pts) If they sold the returned TV's at 25% off the original price, how much money could each store recover? Clearly label your work and show your matrix operation for full credit.

\[
R \cdot (0.75 \cdot RP) = \begin{bmatrix}
\text{AMOUNT RECOVERED} \\
\text{(look size)} \cdot \text{(size, } \theta) \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
17512.50 \\
10218.75 \\
12112.50 \\
\end{bmatrix}
\]
OR \[R \cdot RP = \text{VALUE RETURNED} = \begin{bmatrix} \$23350 \\ \$13625 \\ \$16150 \end{bmatrix} \]

And \[\text{RETAIL AMOUNT - VALUE RETURNED} \]

= \[\text{ACTUAL RETAIL SOLD IN DECEMBER} = \begin{bmatrix} \$70550 \\ \$167425 \\ \$82800 \end{bmatrix} \]
For questions 6—9 below use the following matrices:

\[A = \begin{bmatrix} 5 & a \\ -a & -5 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & x & -1 \\ 5 & y & 6 \end{bmatrix}, \quad C = \begin{bmatrix} -2 \\ 4 \\ 3 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & -3 & 5 \\ 2 & -2 & 4 \\ 3 & 0 & 6 \end{bmatrix}, \quad E = \begin{bmatrix} -1 & 4 \\ 3 & -1 \\ 0 & 5 \end{bmatrix} \]

6) (3 pt) Find \(2B^t + E\) if possible, if not possible state why.

\[
2 \begin{bmatrix} 2 & 5 \\ x & 4 \\ -1 & 6 \end{bmatrix} + \begin{bmatrix} -1 & 4 \\ 3 & -1 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 3 & 1x1 \\ 2x+3 & 2y-1 \\ -2 & 17 \end{bmatrix}
\]

7) (3 pt) Find \(A \times E^t\) if possible, if not possible state why.

\[
\begin{bmatrix} 5 & a \\ -a & -5 \end{bmatrix} \cdot \begin{bmatrix} -1 & 3 & 0 \\ 4 & -1 & 5 \end{bmatrix} = \begin{bmatrix} -5+4a & 15-a & 5a \\ a-20 & -3a+5 & -25 \end{bmatrix}
\]

8) (3 pt) Solve \(D \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = C\) if possible, if not possible state why.

\[
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = D^{-1} C = \begin{bmatrix} 5 \\ -1 \\ -2 \end{bmatrix}
\]

9) (3 pt) Find \(B \times E \times D^{-1}\) if possible, if not possible state why.

\[
\begin{bmatrix} 1 \\ 2x3 \\ 3x2 \end{bmatrix} \text{ NOT POSSIBLE } \quad \frac{\# \text{ of Columns}}{\# \text{ of Rows}}
\]
For questions 10 - 15 use the Simplex Tables below:

\[
A = \begin{bmatrix}
1 & -4 & 0 & 8 & 0 & 45 \\
0 & -3 & 0 & 5 & 1 & 20 \\
0 & -2 & 1 & 3 & 0 & 9
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
1 & -5 & 0 & 0 & 2 & 0 & 0 & 25 \\
0 & 6 & 0 & 1 & 0 & 3 & 6 & 18 \\
0 & 2 & 1 & 0 & 6 & 0 & 1 & 2 \\
0 & -2 & 0 & 0 & -1 & 5 & 2 & 7
\end{bmatrix}
\]

\[
C = \begin{bmatrix}
1 & -2 & 4 & -3 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 6 & 1 & 0 & 0 & 9 \\
0 & -1 & 5 & 7 & 0 & 1 & 0 & 7 \\
0 & 2 & 1 & -1 & 0 & 0 & 1 & 1
\end{bmatrix}
\]

\[
D = \begin{bmatrix}
1 & 0 & -5 & -1 & 4 & 98 \\
0 & 0 & 2 & 8 & 0 & 1 \\
0 & 1 & 3 & -4 & -6 & 6
\end{bmatrix}
\]

\[
E = \begin{bmatrix}
1 & 3 & -5 & 0 & 0 & 0 \\
0 & -4 & -1 & 1 & 0 & 7 \\
0 & 1 & 4 & 0 & 0 & 8
\end{bmatrix}
\]

\[
F = \begin{bmatrix}
1 & 3 & 1 & 3 & 0 & 27 \\
0 & 7 & 0 & -2 & 1 & 17 \\
0 & 2 & 1 & -4 & 0 & 8
\end{bmatrix}
\]

10) (3 pt) Which Simplex Table above will not produce a maximum and how do you know?

A HAS A PIVOT COLUMN BUT NO POSITIVE PIVOT VALUE

11) (3 pt) Which table is not produced from a system that meets the criteria for the Simplex Algorithm and how do you know?

E, THERE IS NO SLACK VARIABLE FOR CONSTRAINT # 2

12) (2pt) Which table should be pivoted on the entry whose value is 2?

D OR B

13) (2pt) Which could represent an Initial Simplex Table?

C

14) (2pt) What is the Basic Feasible Solution for Table B?

\((0, 2, 18, 0, 0, 0)\)

15) (3 pt) Which could represent a Final Simplex Table and how do you know?

F THERE ARE NO NEGATIVE ENTRIES IN THE TOP ROW
16) Below is the initial simplex table for a linear program with objective Z with variables x and y.

\[
\begin{array}{ccc|ccc|c}
1 & -60 & -50 & 0 & 0 & 0 & 0 \\
0 & 4 & 10 & 1 & 0 & 0 & 100 \\
0 & \hat{2} & 1 & 0 & 1 & 0 & 22 \\
0 & 3 & 3 & 0 & 0 & 1 & 39
\end{array}
\]

10\% = 25
22\% = 11
39\% = 13

a) (3 pts) Circle the pivot point for this table and give its location here $(3, 2)$.

b) (5 pts) State the objective function for the linear program and show the constraint inequalities.

Objective: $Z = 60x + 50y$

Constraints:

\[
\begin{align*}
4x + 10y &\leq 100 \\
2x + y &\leq 22 \\
3x + 3y &\leq 39 \\
x &\geq 0 \\
y &\geq 0
\end{align*}
\]

b) Below are the simplex tables for the remainder of the algorithm. Indicate the basic feasible solution (BFS) for each. (2 points each)

\[
\begin{array}{ccc|ccc|c}
1 & 0 & -20 & 0 & 30 & 0 & 660 \\
0 & 0 & 8 & 1 & -2 & 0 & 56 \\
0 & 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 11 \\
0 & 0 & \frac{3}{2} & 0 & \frac{3}{2} & 1 & 6
\end{array}
\quad \text{and then} \quad
\begin{array}{ccc|ccc|c}
1 & 0 & 0 & 10 & \frac{40}{3} & 0 & 740 \\
0 & 0 & 0 & 1 & 6 & -\frac{16}{3} & 24 \\
0 & 1 & 0 & 0 & 1 & -\frac{1}{3} & 9 \\
0 & 0 & 1 & 0 & -1 & \frac{2}{3} & 4
\end{array}
\]

BFS = $(11, 0, 5, 0, 6)$

\[
\text{Max } 660
\]

c) (3 pts) State the conclusion to the linear program.

Z is maximized @ $(9, 4)$ with

A value of 740
17) Below is the graph of the feasible region for the linear program from question #16.

a) (3 pts) Trace the path the simplex algorithm took to arrive at the solution.

b) (2 pts) Label each corner on the path and indicate the associated maximum value of Z.