(1) (a) Prove that for any sets A, B, and C, we have

$$(A \cup B) \setminus C \subseteq A \cup (B \setminus C).$$

Solution. Let $x \in (A \cup B) \setminus C$. Then $x \in (A \cup B)$ and $x \notin C$. If $x \in A$, then $x \in A \cup (B \setminus C)$. If $x \notin A$, then $x \in B$ since $x \in A \cup B$. Since $x \in B$ and $x \notin C$, $x \in B \setminus C$. Then $x \in A \cup (B \setminus C)$ in this case as well.

Since x was arbitrary, this shows that $(A \cup B) \setminus C \subseteq A \cup (B \setminus C)$. □

(b) Does one always have equality in part (a)? Prove or give a counterexample.

Solution. No. Consider the example of $A = B = C = \mathbb{N}$ (any nonempty set would do here). Then $A \cup B = \mathbb{N} \cup \mathbb{N} = \mathbb{N}$, so $(A \cup B) \setminus C = \mathbb{N} \setminus \mathbb{N} = \emptyset$.

On the other hand, $B \setminus C = \mathbb{N} \setminus \mathbb{N} = \emptyset$. So $A \cup (B \setminus C) = \mathbb{N} \cup \emptyset = \mathbb{N}$. □

(2) Let $f : [-1, \infty) \to \mathbb{R}$ be given by $f(x) = x + 1$ and let $g : \mathbb{R} \to [0, \infty)$ be given by $g(x) = 2|x|$ (here $|x|$ is the absolute value of x).

(a) Prove that $g \circ f$ is bijective.

Solution. First note that the composite is the function $g \circ f : [0, \infty) \to [0, \infty)$ given by the formula $g \circ f(x) = g(f(x)) = g(x + 1) = 2|x + 1|$.

Since $x + 1 \geq 0$ for all $x \in [-1, \infty)$, we see that

$$g \circ f(x) = 2(x + 1)$$

for all $x \in [-1, \infty)$.

We first show that $g \circ f$ is injective. Take $x_1, x_2 \in [-1, \infty)$ such that $g \circ f(x_1) = g \circ f(x_2)$. Then

$$2(x_1 + 1) = 2(x_2 + 1) \implies x_1 + 1 = x_2 + 1 \implies x_1 = x_2.$$

This shows that $g \circ f$ is injective.

Now we show that $g \circ f$ is surjective. Take $y \in [0, \infty)$. Since $y \geq 0$, we have $\frac{y}{2} \geq 0$ and $\frac{y}{2} - 1 \geq -1$. Then setting $x = \frac{y}{2} - 1$, we have $x \in [-1, \infty)$ and

$$g \circ f(x) = 2\left(\frac{y}{2} - 1 + 1\right) = y.$$

This shows that $g \circ f$ is surjective.

We conclude that $g \circ f$ is bijective. □

(b) Are either of f or g bijective? Explain your answer.

Solution. Neither are bijective.

First, since $g(-1) = 2|-1| = 2 = g(1)$, we see that g is not injective.

Secondly, for any $x \geq -1$, $f(x) = x + 1 \geq 0$. So there is no $x \in [-1, \infty)$ such that $f(x) = -1$, and f is not surjective.
(3) Prove that any \(n \in \mathbb{N} \) can be written as a sum of distinct powers of 2, i.e. for all \(n \in \mathbb{N} \), are integers \(e_1 > e_2 > \cdots > e_k \geq 0 \) such that \(n = 2^{e_1} + 2^{e_2} + \cdots + 2^{e_k} \)

(Hint: Note that in this expression, \(e_1 \) is uniquely determined by the fact that \(2^{e_1} \) is the largest power of 2 less than or equal to \(n \). How might this observation help you in proving the inductive step? What kind of induction should you use?)

Solution We prove this using strong induction.

Base case: We have \(1 = 2^0 \), so the result holds for \(n = 1 \).

Inductive step: Fix \(n \geq 1 \), and assume the result holds for any \(1 \leq m \leq n \). We want to prove the result for \(n + 1 \).

Let \(e_1 \in \mathbb{Z}_{\geq 0} \) be the largest nonnegative integer such that \(2^{e_1} \leq n + 1 \). Thus, \(2^{e_1} \leq n + 1 \) and \(2^{e_1+1} > n + 1 \). If \(2^{e_1} = n + 1 \), then we have written \(n + 1 \) as a sum of distinct powers of 2 (\(k = 1 \) in this case), and the inductive step holds in this case.

Now assume that \(2^{e_1} < n + 1 \), and let \(m = n + 1 - 2^{e_1} \). Since \(2^{e_1} < n + 1 \), we have \(m > 0 \), and since \(2 \cdot 2^{e_1} = 2^{e_1+1} > n + 1 \), we have \(m < 2^{e_1} \). Then \(1 \leq m \leq n \), and we can apply our inductive hypothesis to \(m \). Thus, there are integers \(e_2 > \cdots > e_k \geq 0 \) such that \(m = 2^{e_2} + \cdots + 2^{e_k} \).

We then have
\[
n + 1 = 2^{e_1} + m = 2^{e_1} + 2^{e_2} + \cdots + 2^{e_k}.
\]

Also, since \(m < 2^{e_1} \), we have \(e_1 > e_2 \). This finishes the proof of the inductive step.

By the principal of strong induction, the theorem is proved. \(\square \)

(4) Let \(U \) be a set and let \(\{A_i : i \in I\} \) be an indexed collection of sets such that \(A_i \subseteq U \) for all \(i \in I \).

(a) Explain why \(U \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (U \setminus A_i) \) and \(U \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (U \setminus A_i) \).

Solution. Firstly, \(U \setminus \bigcup_{i \in I} A_i \) is the set of all \(x \in U \) such that \(x \notin \bigcup_{i \in I} A_i \). Now \(x \in U \setminus \bigcup_{i \in I} A_i \) if and only if there exists \(i \in I \) such that \(x \notin A_i \). So \(x \notin \bigcup_{i \in I} A_i \) if and only if \(x \notin A_i \) for all \(i \in I \). Thus the set of \(x \in U \) such that \(x \notin \bigcup_{i \in I} A_i \) equals the set of \(x \in U \) such that \(x \in U \setminus A_i \) for all \(i \in I \), i.e. \(U \setminus (\bigcup_{i \in I} A_i) = \bigcap_{i \in I} (U \setminus A_i) \).

Secondly, \(U \setminus \bigcap_{i \in I} A_i \) is the set of all \(x \in U \) such that \(x \notin \bigcap_{i \in I} A_i \). We have that \(x \in \bigcap_{i \in I} A_i \) if and only if \(x \in A_i \) for all \(i \in I \). So \(x \notin \bigcap_{i \in I} A_i \) if and only if there exists \(i \in I \) such that \(x \notin A_i \). Thus the set of \(x \in U \) such that \(x \notin \bigcap_{i \in I} A_i \) equals the set of \(x \in U \) such that \(x \in U \setminus A_i \) for some \(i \in I \), i.e. \(U \setminus (\bigcap_{i \in I} A_i) = \bigcup_{i \in I} (U \setminus A_i) \).

(b) Consider the example \(U = \mathbb{R} \), \(I = \mathbb{N} \), and for every \(n \in \mathbb{N} \), \(A_n = \{x \in \mathbb{R} : |x| \geq n\} \).

What is \(\bigcup_{n \in \mathbb{N}} A_n \)? What is \(\mathbb{R} \setminus (\bigcup_{n \in \mathbb{N}} A_n) \)?

Solution. Note that \(A_n \subseteq A_1 \) for every \(n \in \mathbb{N} \). Thus
\[
x \in \bigcup_{n \in \mathbb{N}} A_n \iff x \in A_n \text{ for some } n \in \mathbb{N} \iff x \in A_1.
\]

So \(\bigcup_{n \in \mathbb{N}} A_n = A_1 = \{x \in \mathbb{R} : |x| \geq 1\} \), and
\[
\mathbb{R} \setminus \bigcup_{n \in \mathbb{N}} A_n = \{x \in \mathbb{R} : |x| < 1\} = (-1, 1).
\]

What is \(\mathbb{R} \setminus A_n \)? What is \(\bigcap_{n \in \mathbb{N}} (\mathbb{R} \setminus A_n) \)? (You should get the same answer as in part (b)).

Solution. \(\mathbb{R} \setminus A_n = \{x \in \mathbb{R} : |x| < n\} = (-n, n) \). Note that \((-1, 1) \subseteq (-n, n) \) for all \(n \in \mathbb{N} \). So
\[
x \in \bigcap_{n \in \mathbb{N}} (-n, n) \iff x \in (-n, n) \text{ for all } n \in \mathbb{N} \iff x \in (-1, 1).
\]

So \(\bigcap_{n \in \mathbb{N}} (\mathbb{R} \setminus A_n) = (-1, 1) \). \(\square \)