Math 347

Midterm 1 Midterm 2 Midterm 3 Post-Midterm 3

- Logic and proofs
 - Sets and functions
 - More functions
 - The real number axioms
 - Divisibility and the Euclidean algorithm
 - Induction and well-ordering
 - Cardinality of sets

Logic and proofs

- Propositional logic
 - Truth tables, \(\land, \lor, \neg, \rightarrow, \leftrightarrow \)
 - Negation rules, converse, contrapositive
- Types of proofs and basic proofs
 - Direct proofs and proof by contrapositive (e.g., divisibility properties and inequalities of real numbers)
 - Proof by contradiction (e.g., in finite sets, \(\exists \) is vacuous)
- Quantifiers
 - \(\forall, \exists \) and rules for \(\neg \)

Divisibility and the Euclidean algorithm

- The division algorithm and congruences
 - Statement of the division algorithm
 - Definition of congruence and equivalent properties
 - Arithmetic modulo \(n \)
• GCDs and the Euclidean algorithm
 - gcds
 - the Euclidean algorithm
 - Bezout’s identity and linear Diophantine equations
 - Applications of Bezout’s identity to prime numbers
 - RSA cryptosystem

Basic sets and functions

• Sets
 - terminology, notation, subsets
 - union, intersection, complement
 - set theoretic algebra

• Functions
 - basic definitions
 - injectivity, surjectivity, bijectivity
 - Finite sets and the pigeonhole principle
 - composition of functions

Induction

• Basic induction
 - method and examples

• Strong induction
 - method and examples

• Well-orderedness
 - N is well-ordered
 - well-ordered \(\Rightarrow\) induction
 \(\Rightarrow\) division algorithm

More sets and functions

• More sets
 - Cartesian products
- Power sets
- Unions and intersections of indexed collections of sets
- The Cantor set

• More on functions
 - inverse functions and relation to bijections
 - inverse images of sets under (arbitrary) functions

Equivalence relations

• Relations and equivalence relations
 - basic definitions and examples
 - equivalence classes

• Partitions
 - relation to equivalence relations

• Well-definition
 - modular arithmetic again
 - functions on equivalence classes

Cardinality

• Basic definitions
 - $|A| \leq |B|$, $|A| = |B|$, $|A| < |B|

• Denumerable sets
 - examples: \mathbb{Z}, \mathbb{R}, $\mathbb{N} \times \mathbb{N}$, certain unions
 - the smallest infinity

• Bigger sets
 - $[0,1]$ is uncountable
 - Cantor–Schröder–Bernstein and applications
 (e.g. $|UR| = |\text{Cantor set}| = |[0,1]|$)
- Cardinalities of power sets

The Real Numbers and Sequences of Real Numbers

- **The real numbers**
 - Construction of \(\mathbb{R} \)
 - \(\inf \), \(\sup \), and the least upper bound property

- **Sequences of real numbers**
 - Limits and convergence of sequences
 - Bounded sequences, the monotone convergence theorem, and the squeeze theorem
 - Limit laws
 - Subsequences and the Bolzano–Weierstrass theorem
 - Cauchy sequences and the completeness of \(\mathbb{R} \)

- **Infinite series**
 - Definition and examples
 - The comparison test and the ratio test