Math 347 - Lecture 32

Topics - Infima and Supremums

Def Let \(A \subseteq \mathbb{R} \).

- An upper bound for \(A \) is \(y \in \mathbb{R} \) such that \(\forall x \in A \), \(x \leq y \). If an upper bound exists for \(A \), we say \(A \) is bounded above. An upper bound that is \(\leq \) any other upper bound is called a least upper bound or supremum for \(A \), and is written \(\sup A \).

- A lower bound for \(A \) is \(x \in \mathbb{R} \) such that \(\forall a \in A \), \(x \leq a \). If a lower bound exists for \(A \), we say that \(A \) is bounded below. A lower bound that is \(\geq \) any other lower bound for \(A \) is called a greatest lower bound or infimum for \(A \), and is written \(\inf A \).

Ex \((-\infty, 7] \) is bounded above but not bounded below. \(\sup (-\infty, 7] = 7 \)

Ex \((3, 7) \) is bounded above and below, \(\sup (3, 7) = 7 \), and \(\inf (3, 7) = 3 \).

Let's prove that \(\sup (3, 7) = 7 \). \(\forall x \in (3, 7), \ x < 7 \), \(\infty \) \(7 \) is an upper bound. To show it is the least upper bound, it is equivalent to show that \(\forall x < 7 \), \(x \) is not an upper bound for \((3, 7) \).

Take any \(x < 7 \). Then \(x < \frac{x + 7}{2} < 7 \).

Set \(y = \begin{cases} \frac{x + 7}{2} & \text{if } x > 3 \\ 4 & \text{if } x \leq 3 \end{cases} \).

Then \(y \in (3, 7) \) and \(x < y \), so \(x \) is not an upper bound. \(\square \)
Rule 1. \(\sup A \) and \(\inf A \), if they exist, are unique. Indeed, if \(r \) and \(s \) are two least upper bounds, then \(r \leq s \) and \(s \leq r \), so \(r = s \).

2. As the 2nd example above shows, \(\sup A \) (or \(\inf A \)) does not have to belong to \(A \).

In (Axiom (Least upper bound property)) Any nonempty bounded above subset of \(\mathbb{R} \) has a least upper bound.

\(\sqrt{2} \) exists in \(\mathbb{R} \).

Proof Let \(A = \{ x \in \mathbb{R} : x^2 < 2 \} \) and let \(\alpha = \sup A \).

We'll prove that \(\alpha^2 = 2 \).

Assume otherwise, so either \(\alpha^2 < 2 \) or \(\alpha^2 > 2 \).

Since \(\alpha \) is an upper bound for \(A \), we have \(\alpha > 0 \) (if \(\alpha \in A \), for example). So \(\frac{3}{\alpha} > 0 \) and \(\alpha \neq \frac{3}{\alpha} \).

Consider \(y = \frac{1}{2} \left(\alpha + \frac{3}{\alpha} \right) \).

As theorem from lecture 4 (arithmetic vs geometric mean):

\[
y^2 = \alpha \left(\frac{3}{\alpha} \right) = 2, \quad \text{and} \quad 2 > \frac{3}{\alpha} \cdot \alpha = (\frac{3}{\alpha})^2.
\]

If \(\alpha^2 > 2 \), then \(\alpha > \frac{3}{\alpha} \), which implies that \(y < \alpha \).

But \(y^2 > 2 \) and \(y < \alpha \) contradicts the fact that \(\alpha \) is the least upper bound.

If \(\alpha^2 < 2 \), then \(\alpha < \frac{3}{\alpha} \) and \(y < \frac{3}{\alpha} \).

But the \(\alpha < \frac{3}{\alpha} \) and \((\frac{3}{\alpha})^2 < 2 \) contradicts the fact that \(\alpha \) is an upper bound for \(A \).

In either case we have a contradiction, and we conclude that \(\alpha^2 = 2 \). \(\square \)
\[
\min \{ \alpha, 3 \} = 3 \quad \max \{ \alpha, 3 \} = \alpha
\]

\[
y = \frac{1}{2} (x + \frac{3}{2})
\]

The \(x^2 < 2 \) \Rightarrow \(2x^2 < 3 \Rightarrow x < \frac{3}{\sqrt{2}} \) \(x > \frac{3}{\sqrt{2}} \) \(\alpha \) not an upper bound \(\frac{3}{\sqrt{2}} > \alpha \) \(\alpha \) ad in \(A \).

Rul: \(\mathbb{Q} \) does not satisfy the least upper bound property. For example: \(A = \mathbb{Q} - \{ \sqrt{2} \} x^2 < 2 \mathbb{Q} \) is bounded but does not have a least upper bound \(\mathbb{Q} \). Indeed, the argument above shows that if it did, its square would be 2. But we showed in lecture 3 that \(\sqrt{2} \) is no such rational number.

The Archimedean property of \(\mathbb{R} \) \(\mathbb{N} \) is not bounded in \(\mathbb{R} \).

Proof: Assume it is. Then by the least upper bound property, \(\alpha = \sup \mathbb{N} \) exists. Since \(\alpha \) is the least upper bound, \(\alpha - 1 \) is not an upper bound for \(\mathbb{N} \). Thus \(\exists n \in \mathbb{N} \) such that \(n > \alpha - 1 \). Thus \(n + 1 \in \mathbb{N} \) and \(n + 1 > \alpha \), a contradiction.

Cor: For any positive real numbers \(x, y \) \(\exists n \in \mathbb{N} \) such that \(nx > y \).

Proof: Since \(\mathbb{N} \) does not have an upper bound, \(\exists n \in \mathbb{N} \) such that \(n > \frac{y}{x} \).

Taking \(y = 1 \) in this corollary yields the useful special case.
For any positive real number \(x \), \(\exists n \in \mathbb{N} \) such that \(\frac{1}{n} < x \).

Very important: For what we will be doing is the absolute value:
\[|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \]

For any \(x, y \in \mathbb{R} \), we interpret \(|x - y| \) as the distance between \(x \) and \(y \). In particular, \(|x - y| < \varepsilon \) small \(\Rightarrow \) \(x \) and \(y \) are close.

We will usually use \(\varepsilon \) to denote a positive real number that you should think of as being small.

So for \(\varepsilon > 0 \),
\[|x - y| < \varepsilon \iff -\varepsilon < x - y < \varepsilon \]
\[\iff -\varepsilon < y - x < \varepsilon \]
\[\iff \varepsilon < x - y < \varepsilon \]
\[\iff x \in (y - \varepsilon, y + \varepsilon) \]

Easy Theorem: Let \(x, y \in \mathbb{R} \). Assume \(x, y \in \mathbb{R}, \varepsilon > 0 \).
We have \(|x - y| < \varepsilon \). Then \(x = y \).

Proof: If \(x \neq y \), then \(|x - y| > 0 \), so taking \(\varepsilon = |x - y| > 0 \),
we have \(|x - y| \neq \varepsilon \).

Yoga of analysis: Often prove \(x = y \) by proving \(|x - y| < \varepsilon \)
for any \(\varepsilon > 0 \). We also use this to motivate definitions:
Say we have STUFF (say a sequence, a function) that
we want to say approaches a real number \(y \).
We make a definition of \(\varepsilon \)-form: \(\forall \varepsilon > 0 \)
we can ensure
\[|(\text{things from stuff}) - y| < \varepsilon \]
We say a sequence of real numbers \((x_n)_{n=1}^{\infty}\) has a limit \(L \in \mathbb{R}\) if \(\forall \varepsilon > 0, \exists N \in \mathbb{N}\) such that:
\[
 n \geq N \implies |x_n - L| < \varepsilon.
\]
In this case, we write \(\lim_{n \to \infty} x_n = L\) or sometimes just \(x_n \to L\). We say a sequence is convergent if it has a limit.