Theorem: Let \(\sim \) be an equivalence relation on a set \(A \), and let \(a, b \in A \). Then the following are equivalent:

1. \(a \sim b \)
2. \(\overline{\{a\}} \cap \overline{\{b\}} = \emptyset \)
3. \(\overline{\{a\}} = \overline{\{b\}} \)

Proof:

1 \(\Rightarrow \) 2: Assume that \(a \sim b \). Then \(b \in \overline{\{a\}} \).
Since \(b \in \overline{\{b\}} \) by reflexivity, we have \(b \in \overline{\{a\}} \cap \overline{\{b\}} \).
Hence \(\overline{\{a\}} \cap \overline{\{b\}} = \emptyset \).

2 \(\Rightarrow \) 3: Assume that \(\overline{\{a\}} \cap \overline{\{b\}} = \emptyset \). Thus \(\exists c \in \overline{\{a\}} \cap \overline{\{b\}} \).
So \(a \sim c \) and \(b \sim c \).

First, \(a \sim c \Rightarrow c \sim a \) by symmetry.

Then \(b \sim c \) and \(c \sim a \) \(\Rightarrow b \sim a \) by transitivity, and \(b \sim a \) and \(a \sim x \) \(\Rightarrow b \sim x \) by transitivity again.

So \(x \in \overline{\{b\}} \) and \(\overline{\{a\}} \subseteq \overline{\{b\}} \).
The proof that \(\overline{\{b\}} \subseteq \overline{\{a\}} \) is similar.

3 \(\Rightarrow \) 1: Assume that \(\overline{\{a\}} = \overline{\{b\}} \). By reflexivity, \(b \in \overline{\{b\}} \).
Since \(\overline{\{a\}} = \overline{\{b\}} \), \(b \in \overline{\{a\}} \) and \(a \sim b \).

In particular, the theorem says that if two equivalence classes \(\overline{\{a\}} \) and \(\overline{\{b\}} \) are not equal, then they are disjoint.

Note also that any \(a \in A \) lies in some equivalence class, namely \(a \in \overline{\{a\}} \). These two facts motivate the following definition.
Define let \(A \) be a set. A partition of \(A \) is a collection \(\{ A_i : i \in I \} \) of subsets \(A_i \subseteq A \) satisfying the following:

1. \(\bigcup_{i \in I} A_i = A \)
2. If \(A_i \neq A_j \), then \(A_i \cap A_j = \emptyset \).

Idea: “Chop up \(A \) into non-overlapping pieces.”

Ex. Are the following partitions?

* Is \(\{ [n, n+1] : n \in \mathbb{Z} \} \) a partition of \(\mathbb{R} \)?
 No: \([0, 1] \cup [1, 2] \) and \([0, 1] \cap [1, 2] \neq \emptyset \).

* Is \(\{ [m, m+1] : m \in \mathbb{Z} \} \) a partition of \(\mathbb{R} \)?
 Yes: every \(x \in \mathbb{R} \) satisfies \(n \leq x \leq n+1 \) for some \(n \in \mathbb{Z} \), and \([n, n+1] \neq [m, m+1] \) \(\Rightarrow m \neq n \Rightarrow m < n \Rightarrow [n, n+1] \cap [m, m+1] = \emptyset \).

* Is \(\{ (n, n+1) : n \in \mathbb{Z} \} \) a partition of \(\mathbb{R} \)?
 No. For example, \(0 \notin (0, 1) \) since \(0 < 0 < 1 \).

* Let \(A = \mathbb{R}^2 \) and for each \(r > 0 \), let \(A_r = \{ (x,y) \in \mathbb{R}^2 : x^2 + y^2 = r^2 \} \).
 Is \(\{ A_r : r > 0 \} \) a partition of \(\mathbb{R}^2 \)? Yes.

* Is \(\{ 11, 23, 33, 63, 43, 53, 33 \} a partition of \(\{ 1, 2, 3, 4, 5, 6 \} \)?
 Yes.
Let \(n \in \mathbb{N} \). For each \(0 \leq m < n \), let
\[
A_m = \{ a \in \mathbb{Z} : a \equiv m \pmod{n} \}.
\]
Is \(\{ A_0, A_1, \ldots, A_{n-1} \} \) a partition of \(\mathbb{Z} \)?

Yes. By the division algorithm, for every \(a \in \mathbb{Z} \),
there is a unique \(0 \leq b < n \) such that \(a \in [b]_n \).

Let \(A \) be a set.
1. If \(\sim \) is an equivalence relation on \(A \), then the equivalence classes \([a] \) form a partition of \(A \).
2. Let \(\mathcal{A} = \{ A_i : i \in I \} \) be a partition of \(A \). Define a relation \(\sim \) on \(A \) by
 \[
a \sim b \iff \exists i \in I \text{ such that } a \in A_i \text{ and } b \in A_i.
 \]
 Then \(\sim \) is an equivalence relation.

Proof 1. For any \(a \in A \), we have \(a \in [a] \) by reflexivity of \(\sim \), so the union of all equivalence classes is \(A \).
If \([a], [b] \in A/\sim \) with \([a] \neq [b] \), the diagram from the beginning of the lecture yields \([a] \cap [b] = \emptyset \).
Thus, the equivalence classes \([a] \sim \) form a partition of \(A \).

2. Reflexive: Take \(a \in A \). Since \(\mathcal{A} = \{ A_i : i \in I \} \) is a partition of \(A \), \(\cup A_i = A \), and \(\exists i \in I \) such that \(a \in A_i \).
 Thus \(a \sim a \).

Symmetric: Take \(a, b \in A \) such that \(a \sim b \). Then \(\exists i \in I \) such that \(a \in A_i \) and \(b \in A_i \).
 Thus \(b \sim a \).

Transitive: Take \(a, b, c \in A \) such that \(a \sim b \) and \(b \sim c \).
 Then \(\exists i, j \in I \) such that \(a \in A_i \) and \(b, c \in A_j \).
 Thus \(b \in A_j \cap A_i \), \(A_i \neq \emptyset \). Thus \(A_i = A_j \).
 Since \(\mathcal{A} = \{ A_i : i \in I \} \) is a partition, \(A_i \cap A_j = \emptyset \Rightarrow A_i = A_j \).
 Thus \(a \in A_i = A_j \), and \(a \sim c \).
We can use this to define seemingly strange equivalence relations.

Example (Möbius band) Let \(A = [0,2] \times [0,1] \subset \mathbb{R}^2 \).

Define a partition of \(A \) by:

- If \((x,y) \in A\) has \(0 < x < 2 \), put \((x,y)\) in a set by itself \(\{(x,y)\}\).
- For any \(y \in [0,1] \) be put \((0,y)\) and \((2,1-y)\) together in a set of 2 elements \(\{(0,y), (2,1-y)\}\).

We can visualize \(A/\sim \) by “gluing” elements in the same equivalence class.