Let U be a set and let A and B be subsets of U.

- The complement of A in U, written A^c or $U \setminus A$, is
 \[A^c = U \setminus A = \{ x \in U : x \notin A \} \]
- The complement of A relative to B, written $B \setminus A$, is
 \[B \setminus A = \{ x \in B : x \notin A \} \]
- The union of A and B, written $A \cup B$, is
 \[A \cup B = \{ x \in U : x \in A \text{ or } x \in B \} \]
- The intersection of A and B, written $A \cap B$, is
 \[A \cap B = \{ x \in U : x \in A \text{ and } x \in B \} \]

In picture:

![Venn Diagram](https://via.placeholder.com/150)
\[\begin{align*}
U &= \mathbb{Z}, \quad A = \{2\mathbb{Z}\}, \quad B = \{0, 1, 2, 3, 4\} \\
U \setminus A &= \{ x \in \mathbb{Z} : x \text{ is odd} \} \\
B \setminus A &= \{ 1, 3 \} \\
A \cap B &= \{ x \in \mathbb{Z} : x < 0 \text{ or } x > 4 \} \\
A \cup B &= \{ x \in \mathbb{Z} : x \text{ is even or } x = 1 \text{ or } x = 3 \} \\
A \cap B &= \{ 0, 2, 4 \}
\end{align*} \]

Then let \(A, B, C \) be sets.

1. \(\emptyset \cup A = A \) and \(\emptyset \cap A = \emptyset \)
2. \(A \cap B \subseteq A \subseteq A \cup B \)
3. \(A \cup B = B \cup A \) and \(A \cap B = B \cap A \)
4. \((A \cup B) \cap C = A \cup (B \cap C) \) and \((A \cap B) \cup C = A \cap (B \cup C) \)
5. \(A \cup A = A = A \cap A \)
6. \(A \subseteq B \Rightarrow A \cup C \subseteq B \cup C \) and \(A \cap C \subseteq A \cap C \)

Proof

1. Assume \(A \subseteq B \). We first show \(A \cup C \subseteq B \cup C \).

 Take \(x \in A \cup C \), we want to show \(x \in B \cup C \).

 Since \(x \in A \cup C \), either \(x \in A \) or \(x \in C \). If \(x \in A \), then \(x \in B \) since \(A \subseteq B \), hence \(x \in B \cup C \).

 If \(x \in C \), then we also have \(x \in B \cup C \). So \(x \in B \cup C \) in either case.

 Now we show that \(A \cap C \subseteq B \cap C \).

 Take \(x \in A \cap C \). Then \(x \in A \) and \(x \in C \). Since \(A \subseteq B \), we see that \(x \in B \) and \(x \in C \), so \(x \in B \cap C \).

2. Let \(A, B \) be subsets of \(\mathbb{Z} \subseteq U \).

 1. \(U \setminus (A \cap B) = (U \setminus A) \cup (U \setminus B) \)
 2. \(U \setminus (A \cup B) = (U \setminus A) \cap (U \setminus B) \)
 3. \(U \setminus (U \setminus A) = A \)
 4. \(A \setminus B = A \cap B \)
 5. \(A \subseteq B \Leftrightarrow (U \setminus B) \subseteq (U \setminus A) \)
Rule 2: Venn diagrams can help you remember/picture these kinds of statements.

Proof of 2: For \(x \in U \), we have

\[
\begin{align*}
 x \in U \setminus (A \cup B) & \iff x \notin A \cup B \\
 & \iff x \text{ is not an element of } A \text{ or } B \\
 & \iff x \text{ is not an element of } A \text{ and } x \text{ is not an element of } B \\
 & \iff x \in (U \setminus A) \cap (U \setminus B).
\end{align*}
\]

Rule 1 and 2 are called de Morgan's Laws.

Campus with de Morgan's Laws from the beginning.

Thus (Distributive Law for sets) Let \(A, B, C \) be sets.

1. \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \)
2. \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \)

Proof of 2: First take \(x \in A \cup (B \cap C) \).

Then \(x \in A \) or \(x \in B \cap C \). If \(x \in A \), then \(x \in A \cup B \) and \(x \in A \cup C \), so \(x \in (A \cup B) \cap (A \cup C) \).

If \(x \in B \cap C \), then \(x \in B \) and \(x \in C \), so \(x \in A \cup B \) and \(x \in A \cup C \), hence \(x \in (A \cup B) \cap (A \cup C) \).

This shows \(A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \).

Now take \(x \in (A \cup B) \cap (A \cup C) \).
Then \(x \in A \cup B \) and \(x \in A \cup C \). If \(x \in A \) then we must have \(x \in B \) or \(x \in C \), so \(x \in A \cup (B \cap C) \) again. This shows \((A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)\).

Since \(A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \) and \((A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)\), we have \[A \cup (B \cap C) = (A \cup B) \cap (A \cup C). \]

Functions

Definition Let \(A \) and \(B \) be sets. A function from \(A \) to \(B \) is a rule that assigns one (and only one) element of \(B \) to each element of \(A \). If \(f \) is a function from \(A \) to \(B \), we write \(f : A \rightarrow B \) and \(f(a) \in B \) for the element assigned to \(a \in A \).

The domain of \(f \), written \(\text{dom}(f) \), is \(A \), and the codomain is \(B \). The image or range of \(f \), written \(\text{im}(f) \) or \(\text{range}(f) \), consisting of all the elements assigned by the rule \(f \).

Diagram:

```
\[ A \] \quad \xrightarrow{f} \quad \[ B \]
```

\(f(x) \) \quad \(f(y) = f(z) \)