(1) For each of the following collections of subsets \(\{ A_r : r \in \mathbb{R} \} \), determine whether or not it determines a partition of \(\mathbb{R}^2 \). Justify your answers, and sketch a few of the subsets \(A_r \).

(a) \(A_r = \{(x, y) \in \mathbb{R}^2 : y = 2x + r\} \).
(b) \(A_r = \{(x, y) \in \mathbb{R}^2 : y = (x - r)^2\} \).
(c) \(A_r = \{(x, y) \in \mathbb{R}^2 : xy = r\} \).

(2) Let \(n \in \mathbb{N} \).

(a) Prove that the operation \(\cdot \) on \(\mathbb{Z}_n \) is well-defined.

For the rest of this question, we write \(\cdot \) for \(\cdot \mod n \) and + for \(+ \mod n \), to make the notation a little easier.

(b) Prove by induction (on \(m \)) that for any \(m \in \mathbb{N} \) and any \(a \in \mathbb{Z} \), we have \([a^m] = [a]^m\). (Where, as you probably guessed, \([a]^m\) means \([a] \cdot [a] \cdot \ldots \cdot [a] \) \(m \) times.

(c) Find all possible values of \(n \in \mathbb{N} \) such that \([5]^m \cdot [9] + [7] = [2]^6\) is true.

(3) Define a relation \(\sim \) on \(\mathbb{Z} \times \mathbb{N} \) by \((a, b) \sim (c, d) \iff ad = bc\).

(a) Prove, without using division, that \(\sim \) is an equivalence relation.

(b) Prove that the function \(f : \mathbb{Z} \times \mathbb{N} \mod \sim \to \mathbb{Q} \) given by \(f([(a, b)]) = \frac{a}{b} \) is well-defined and bijective.

(4) Define a partition of the sphere \(S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\} \) into two element subsets of the form \(\{(x, y, z), (-x, -y, -z)\} \), and let \(\sim \) denote the resulting equivalence relation.

(a) Explain why the function \(g : s^2 \mod \sim \to \mathbb{R} \) given by \(g([(x, y, z)]) = xyz \) is not well-defined.

(b) Prove that the function \(f : s^2 \mod \sim \to \mathbb{R}^3 \) given by \(f([(x, y, z)]) = (yz, zx, xy) \) is well-defined. (The image of this function is a well-known surface called the Roman surface or Steiner surface. You can find pictures of it online.)

(c) For the function \(f \) in part (b), find \(f^{-1}(\{(0, 0, 0)\}) \).

Extra

The following questions will not be graded and do not need to be turned in. They are only here in case you would like extra practice/challenge.

(5) Let \(\sim \) be the equivalence relation on \(\mathbb{Z} \times \mathbb{N} \) of question (3). Define operations \(\oplus \) and \(\otimes \) on \(\mathbb{Z} \times \mathbb{N} \mod \sim \) such that the function \(f \) of (3) part (b) satisfies
\[
\begin{align*}
f([(a, b)] \oplus [(c, d)]) &= f([(a, b)]) + f([(c, d)]) \\
f([(a, b)] \otimes [(c, d)]) &= f([(a, b)]) \cdot f([(c, d)])
\end{align*}
\]
for all \([(a, b)], [(c, d)] \in \mathbb{Z} \times \mathbb{N} \mod \sim \). Prove directly that \(\oplus \) and \(\otimes \) are well-defined.