MATH 347 – HOMEWORK 5

(1) For \(n \in \mathbb{N} \), find a formula for \(\sum_{j=1}^{n} \frac{1}{j(j+1)} \) (try plugging in a few small values for \(n \) and see if you notice a pattern). Prove that your formula is correct for all \(n \in \mathbb{N} \).

(2) Determine the set of natural numbers \(n \) such that \(2^n \geq n^2 \). Prove that your guess is correct.

(3) For each integer \(n \geq 0 \), define integers \(c_n \) as follows
\[
c_0 = 3, \quad c_1 = 2, \quad c_2 = 6, \quad \text{and} \quad c_n = 2c_{n-1} + c_{n-2} - 2c_{n-3} \quad \text{for} \quad n \geq 3.
\]
Prove that \(c_n = 1 + (-1)^n + 2^n \) for all integers \(n \geq 0 \).

(4) Recall that on a previous worksheet we proved that if \(p \) is a prime number and \(a, b \) are integers such that \(p \mid (ab) \), then \(p \mid a \) or \(p \mid b \). Use this together with induction to prove the following generalization:
Let \(p \) be a prime number. For any \(n \in \mathbb{N} \) and any \(a_1, \ldots, a_n \in \mathbb{Z} \), if \(p \mid (a_1 \cdot a_2 \cdots a_n) \), then \(p \mid a_i \) for some \(1 \leq i \leq n \).

(5) In class we used strong induction to prove that any integer \(n \geq 2 \) is either a prime or the product of primes. Give a different proof of this theorem that uses a proof by contradiction and the fact that \(\mathbb{N} \) is well-ordered.

(6) Let \(\mathbb{Z}_{\geq 0} \) be the set of nonnegative integers. In this exercise, we’ll use the fact that \(\mathbb{Z}_{\geq 0} \) is well-ordered to prove the division algorithm (yay!):

Theorem (Division algorithm). For any integers \(a \) and \(b \) with \(b > 0 \), there are unique integers \(q \) and \(r \) such that \(a = bq + r \) and \(0 \leq r < b \).

(a) Let \(S = \{ s \in \mathbb{Z}_{\geq 0} : s = a - bq \text{ for some } q \in \mathbb{Z} \} \). Show that \(S \neq \emptyset \).
(b) By part (a) and the fact that \(\mathbb{Z}_{\geq 0} \) is well-ordered, the set \(S \) has a minimal element \(r \). Prove that \(0 \leq r < b \).
(c) Finally, prove the uniqueness: Let \(q_1, r_1, q_2, r_2 \in \mathbb{Z} \) be such that \(a = bq_i + r_i \) and \(0 \leq r_i < b \) for \(i = 1, 2 \). Prove that \(q_1 = q_2 \) and \(r_1 = r_2 \).

Extra

The following questions will not be graded and do not need to be turned in. They are only here in case you would like extra practice/challenge.

(7) Prove the following super important theorem:

Theorem (The fundamental theorem of arithmetic). For any integer \(n \geq 2 \), there is \(k \in \mathbb{N} \) and prime numbers \(p_1, \ldots, p_k \) such that \(n = p_1 \cdots p_k \). Moreover, this expression is unique up to order of the primes.

(We already showed that \(n \) can be written as the product of primes. The point now is to show the uniqueness. To that end, you need to prove that if you have
\[
p_1 \cdots p_k = q_1 \cdots q_m
\]
then \(k = m \) and that after reordering \(q_1, \ldots, q_m \), if necessary, we have \(p_i = q_i \) for each \(1 \leq i \leq k = m \).

Due date: Wednesday, October 9 at the beginning of class.