Math 347 Final Exam Practice
Fall Semester 2019

1. State the converse and the contrapositive of each of the following propositions.
 (a) If \(c \mid a \) and \(c \mid b \), then \(c \mid (ax + by) \) for all \(x, y \in \mathbb{Z} \).

 Solution.

 Converse: If \(c \mid (ax + by) \) for all \(x, y \in \mathbb{Z} \), then \(c \mid a \) and \(c \mid b \).

 Contrapositive: If there exist \(x, y \in \mathbb{Z} \) such that \(c \nmid (ax + by) \), then \(c \nmid a \) or \(c \nmid b \).

 (b) If \(f : A \to B \) and \(g : B \to C \) are both injective, then \(g \circ f : A \to C \) is injective.

 Solution.

 Converse: If \(g \circ f : A \to C \) is injective, then \(f : A \to B \) and \(g : B \to C \) are both injective.

 Contrapositive: If \(g \circ f : A \to C \) is not injective, then \(f : A \to B \) is not injective or \(g : B \to C \) is not injective.

2. State the negation of each of the following propositions.
 (a) Every element of the set \(A \) is either an element of the set \(B \) or an element of the set \(C \).

 Solution. There is an element of \(A \) that is not an element of \(B \) and is not an element of \(C \).

 (b) For every \(\epsilon > 0 \), there is \(N \in \mathbb{N} \) such that for all \(n, m \geq N \), we have \(|x_n - x_m| < \epsilon \).

 Solution. There exists \(\epsilon > 0 \) such that for all \(N \in \mathbb{N} \), there exist \(n, m \geq N \), such that \(|x_n - x_m| \geq \epsilon \).

3. Find all \(x, y \in \mathbb{Z} \) such that \(57x + 96y = 6 \) or prove that none exist.

 Solution. We first perform the Euclidean algorithm to find \(\gcd(96, 57) \).

 \[
 \begin{align*}
 96 &= 57 \cdot 1 + 39 \\
 57 &= 39 \cdot 1 + 18 \\
 39 &= 18 \cdot 2 + 3 \\
 18 &= 3 \cdot 6 + 0
 \end{align*}
 \]
So \(\gcd(96, 57) = 3 \). Reversing our work, we find that
\[
3 = 39 - 2 \cdot 18 \\
= 39 - 2(57 - 39) \\
= 3 \cdot 39 - 2 \cdot 57 \\
= 3(96 - 57) - 2 \cdot 57 \\
= 3 \cdot 96 - 5 \cdot 57.
\]

Since \(57(-5) + 96(3) = 3 \), we have \(57(-10) + 96(6) = 6 \). Then the set of all \(x, y \in \mathbb{Z} \) such that \(57x + 96y = 6 \) is given by
\[
\begin{align*}
x &= -10 + \frac{96}{3} k = -10 + 32k \\
y &= 6 - \frac{57}{3} k = 6 - 19k,
\end{align*}
\]
for \(k \in \mathbb{Z} \). □

4. Let \(f: A \rightarrow B \) and \(g: B \rightarrow C \) be functions. For each of the following, determine whether or not the statement is true or false. Justify your answers.

(a) If \(g \circ f \) is injective, then \(f \) is injective.

Solution. This is true. Take any \(a_1, a_2 \in A \) such that \(f(a_1) = f(a_2) \). Then \(g \circ f(a_1) = g(f(a_1)) = g(f(a_2)) = g \circ f(a_2) \). By the injectivity of \(g \circ f \), we have \(a_1 = a_2 \). This shows that \(f \) is injective. □

(b) If \(g \circ f \) is injective, then \(g \) is injective.

Solution. This is not true in general. For example, let \(\mathbb{R}_{\geq 0} \) be the set of nonnegative real numbers, let \(f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R} \) be given by \(f(x) = x \), and let \(g: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} \) be given by \(g(x) = x^2 \). Then \(g \circ f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \) is given by \(g \circ f(x) = x^2 \) and is injective since \(x_1^2 = x_2^2 \implies x_1 = x_2 \) for all \(x_1, x_2 \geq 0 \). On the other hand, \(g \) is not injective since \(g(-1) = 1 = g(1) \). □

(c) If \(g \circ f \) is surjective, then \(f \) is surjective.

Solution. This is not true in general. Let \(f \) and \(g \) be as in (b). Then \(g \circ f \) is surjective, since for any \(y \in \mathbb{R}_{\geq 0}, \sqrt{y} \in \mathbb{R}_{\geq 0} \) and \(g \circ f(\sqrt{y}) = (\sqrt{y})^2 = y \). On the other hand, there is no \(x \in \mathbb{R}_{\geq 0} \) such that \(f(x) = -1 \) since \(f(x) = x \geq 0 \) for all \(x \in \mathbb{R}_{\geq 0} \). □
(d) If $g \circ f$ is surjective, then g is surjective.

Solution. This is true. Let $c \in C$. Since $g \circ f$ is surjective, there is $a \in A$ such that $g \circ f(a) = c$. Letting $b = f(a) \in B$, we have $g(b) = g(f(a)) = g \circ f(a) = c$. This shows that g is surjective. \hfill \Box

5. For each $r \in \mathbb{R}$, let $A_r = \{(x, y) \in \mathbb{R}^2 : xy = r\}$.

(a) Find $\bigcup_{r \in \mathbb{R}} A_r$. Justify your answer.

Solution. We’ll show that $\bigcup_{r \in \mathbb{R}} A_r = \mathbb{R}^2$. Since $A_r \subseteq \mathbb{R}^2$ for all $r \in \mathbb{R}$, we have $\bigcup_{r \in \mathbb{R}} A_r \subseteq \mathbb{R}^2$. On the other hand, given any $(x, y) \in \mathbb{R}^2$, we have $(x, y) \in A_{xy}$, so there exists $r \in \mathbb{R}$ such that $(x, y) \in A_r$. This shows that $\bigcup_{r \in \mathbb{R}} A_r = \mathbb{R}^2$. \hfill \Box

(b) Is the indexed collection $\{A_r : r \in \mathbb{R}\}$ pairwise disjoint? Justify your answer.

Solution. Yes. Take any $r, s \in \mathbb{R}$ and assume that $A_r \cap A_s \neq \emptyset$. Take $(x, y) \in A_r \cap A_s$. Then $(x, y) \in A_r$ implies that $xy = r$ and $(x, y) \in A_s$ implies that $xy = s$. So $r = xy = s$, which shows that the collection is pairwise disjoint. \hfill \Box

(c) Is the indexed collection $\{A_r : r \in \mathbb{R}\}$ a partition of \mathbb{R}^2?

Solution. Yes, it follows immediately from part (a) and (b) that $\{A_r : r \in \mathbb{R}\}$ satisfies the definition of a partition of \mathbb{R}^2. \hfill \Box

6. For all $n \in \mathbb{N}$, $4 \mid (3^{2n} - 5^n)$.

(a) Prove this using induction.

Solution. We first prove the base case. When $n = 1$, we have $3^{2n} - 5^n = 3^2 - 5 = 4$ and $4 \mid 4$, so the result is true when $n = 1$.

Now assume that $4 \mid (3^{2n} - 5^n)$ for some $n \in \mathbb{N}$. We have

$$3^{2(n+1)} - 5^{n+1} = 9 \cdot 3^{2n} - 5 \cdot 5^n = 5 \cdot (3^{2n} - 5^n) + 4 \cdot 3^{2n}.$$

By the inductive hypothesis, $4 \mid (3^{2n} - 5^n)$ and clearly $4 \mid 4 \cdot 3^{2n}$, so 4 also divides $(3^{2n} - 5^n) + 4 \cdot 3^{2n} = 3^{2(n+1)} - 5^{n+1}$. This proves the inductive step, and the result follows by induction. \hfill \Box

(b) Prove this using modular arithmetic.
Solution. Note that $2^2 = 9 \equiv 1 \pmod{4}$ and $5 \equiv 1 \pmod{4}$. So for any $n \in \mathbb{N}$,

$$3^{2n} - 5^n = 9^n - 5^n \equiv 1^n - 1^n \pmod{4} \equiv 0 \pmod{4}.$$

So $4 \mid 3^{2n} - 5^n$. □

7. Determine whether or not the following relations R satisfy each of the properties of reflexivity, symmetry, and transitivity. Justify your answers.

(a) The relation R on \mathbb{Z} given by $aRb \iff ab$ is even.

Solution. This relation is not reflexive. For example, $1 \not R 1$ since $1 \cdot 1 = 1$ is not even.

This relation is symmetric, since for all $a, b \in \mathbb{Z}$, we have $ab = ba$, so ab even $\iff ba$ is even. Hence $aRb \iff bRa$.

This relation is not transitive. For example $1R2$ since $1 \cdot 2 = 2$ is even, and $2R1$ since $2 \cdot 1 = 2$ is even, but $1 R 1$ since $1 \cdot 1 = 1$ is odd. □

(b) The relation R on $\mathcal{P}(\mathbb{N})$ given by $ARB \iff A \cap B = A$.

Solution.

This relation is reflexive since for any $A \subseteq \mathbb{N}$, we have $A \cap A = A$, so ARA.

This relation is not symmetric. For example $\emptyset R \{1\}$ since $\emptyset \cap \{1\} = \emptyset$, but $\{1\} R \emptyset$ since $\{1\} \cap \emptyset = \emptyset \neq \{1\}$.

This relation is transitive. Let $A, B, C \subseteq \mathbb{N}$ be such that ARB and BRC. Then ARB means that $A \cap B = A$ which implies that $A \subseteq B$. Similarly BRC implies that $B \subseteq C$. Then $A \subseteq C$ and $A \cap C = A$, so ARC. □

8. Let A and B be infinite sets. Prove that $A \cup B$ is denumerable if and only if A and B are both denumerable.

Solution. First assume that $A \cup B$ is denumerable, so there is a bijection $f : A \cup B \to \mathbb{N}$. The map $g : A \to A \cup B$ given by $g(a) = a$ is clearly injective, so $f \circ g : A \to \mathbb{N}$ is injective and $|A| \leq \aleph_0$. But then since A is infinite, we must have $|A| = \aleph_0$, i.e. A is denumerable. The proof that B is denumerable is the same.

Now assume that both A and B are denumerable. Since A and B are infinite, $A \cup B$ is infinite as well. So to prove that $A \cup B$ is denumerable, it suffices to show there is an
injection $f : A \cup B \to \mathbb{N}$. Since A and B are denumerable, there are bijections $g : A \to \mathbb{N}$ and $h : B \to \mathbb{N}$. Define $f : A \cup B \to \mathbb{N}$ by

$$f(x) = \begin{cases} 2g(x) & \text{if } x \in A, \\ 2h(x) + 1 & \text{if } x \in B \setminus A. \end{cases}$$

We claim that f is injective. Take $x, y \in A \cup B$ such that $f(x) = f(y)$. If $f(x) = f(y)$ is even, then by the definition of f, we see that $x, y \in A$ and $f(x) = g(x) = g(y) = f(y)$. Since g is injective, $x = y$. If $f(x) = f(y)$ is odd, then by the definition of f, we see that $x, y \in B$ and $f(x) = h(x) = h(y) = f(y)$. Since h is injective, $x = y$ in this case as well. This completes the proof. \[\square\]

Remark. A less formal but still okay justification of the implication

$$A \text{ and } B \text{ denumerable } \implies A \cup B \text{ is denumerable}$$

is as follows.

Since A and B are denumerable, we have listings $A = \{a_1, a_2, a_3, \ldots, \}$ and $B = \{b_1, b_2, b_3, \ldots, \}$. The consider the listing

$$\{a_1, b_1, a_2, b_2, a_3, b_3, \ldots, \}$$

where we alternate elements from A and from B. After deleting any repetitions, we obtain a listing

$$A \cup B = \{x_1, x_2, x_3, \ldots, \}$$

and the function $f : \mathbb{N} \to A \cup B$ given by $f(n) = x_n$ is a bijection. \[\square\]

9. (a) Define what it means for a sequence of real numbers $(x_n)_{n=1}^{\infty}$ to have a **limit** $L \in \mathbb{R}$.

Solution. The sequence $(x_n)_{n=1}^{\infty}$ has **limit** L if for all $\epsilon > 0$, there is $N \in \mathbb{N}$ such that for all $n \geq N$, $|x_n - L| < \epsilon$.

(b) Use the definition to prove that $\lim_{n \to \infty} \left(2 + \frac{7}{(n+1)^3}\right) = 2$.

Solution. Fix $\epsilon > 0$. By the Archimedean principle, there is $N \in \mathbb{N}$ such that $N \geq \sqrt[3]{\frac{7}{\epsilon}} - 1$. Then for any $n \geq N$, we have

$$\left| 2 + \frac{7}{(n+1)^3} - 2 \right| = \frac{7}{(n+1)^3} \leq \frac{7}{(N+1)^3} < \frac{7}{\left(\sqrt[3]{\frac{7}{\epsilon}} - 1 + 1\right)^3} = \frac{7}{\epsilon} = \epsilon.$$ \[\square\]
10. Using the definition, prove that if \((x_n)_{n=1}^\infty\) and \((y_n)_{n=1}^\infty\) are Cauchy sequences of real numbers, then \((x_n + y_n)_{n=1}^\infty\) is a Cauchy sequence.

Solution. Fix \(\epsilon > 0\). Since \((x_n)_{n=1}^\infty\) is Cauchy, there is \(N_1 \in \mathbb{N}\) such that for all \(n, m \geq N_1\), \(|x_n - x_m| < \frac{\epsilon}{2}\). Similarly, there is \(N_2 \in \mathbb{N}\) such that for all \(n, m \geq N_2\), \(|y_n - y_m| < \frac{\epsilon}{2}\). Let \(N = \max\{N_1, N_2\}\). Then for all \(n, m \geq N\), we have

\[
|(x_n + y_n) - (x_m + y_m)| = |(x_n - x_m) + (y_n - y_m)| \leq |x_n - x_m| + |y_n - y_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.
\]

This proves that \((x_n + y_n)_{n=1}^\infty\) is Cauchy. \(\square\)

11. Let \((x_k)_{k=1}^\infty\) be a sequence of real numbers.

(a) Define what it means for the infinite series \(\sum_{k=1}^\infty x_k\) to converge.

Solution. The infinite series \(\sum_{k=1}^\infty x_k\) converges if the sequence of partial sums \((s_n)_{n=1}^\infty\) converges, where \(s_n = \sum_{k=1}^n x_k\) for every \(n \in \mathbb{N}\).

(b) Prove that if \(\sum_{k=1}^\infty x_k\) converges, then \(\lim_{k \to \infty} x_k = 0\).

Solution. For each \(n \in \mathbb{N}\), let \(s_n = \sum_{k=1}^n x_k\). For convenience, set \(s_0 = 0\). Then for any \(k \in \mathbb{N}\), we have \(x_k = s_k - s_{k-1}\). Since \(\sum_{k=1}^\infty s_k\) converges, the sequence \((s_n)_{n=1}^\infty\) converges; let \(L\) be its limit. Then \((s_{n-1})_{n=1}^\infty\) also has limit \(L\) as it is just a shift of the sequence \((s_n)_{n=1}^\infty\). Then by limit laws, \((x_k)_{k=1}^\infty\) is convergent and

\[
\lim_{k \to \infty} x_k = \lim_{k \to \infty} (s_k - s_{k-1}) = \lim_{k \to \infty} s_k - \lim_{k \to \infty} s_{k-1} = L - L = 0.
\]

\(\square\)

Alternate solution. For each \(n \in \mathbb{N}\), let \(s_n = \sum_{k=1}^n x_k\). For convenience, set \(s_0 = 0\). Then for any \(k \in \mathbb{N}\), we have \(x_k = s_k - s_{k-1}\). Since \(\sum_{k=1}^\infty x_k\) converges, the sequence \((s_n)_{n=1}^\infty\) converges, hence is Cauchy. Then for any \(\epsilon > 0\), there is \(N \in \mathbb{N}\) such that for all \(n, m \geq N\), \(|s_n - s_m| < \epsilon\). In particular, for all \(k \geq N + 1\), we then have

\[
|x_k| = |s_k - s_{k-1}| < \epsilon.
\]

This shows that \(\lim_{k \to \infty} x_k = 0\). \(\square\)