Math 514

Last Time: Kodaira embedding theorem
This Time: Sobolev spaces

Although we're mostly interested in the Hodge decomposition for smooth differential forms, it is easier to establish the Hodge decomposition for L^2 differential forms and then deduce the smooth version from that.

Differential operators are not a priori defined on L^2, so the first thing we should do is describe Sobolev spaces where they are defined.

The key concept is the "weak derivative" of a function. If $f \in C^1(\mathbb{R}) = C(\mathbb{R}, \mathbb{R})$ then for any $\phi \in C_c^\infty(\mathbb{R})$ we have $\int \phi'(x) f'(x) \, dx = -\int \phi(x) f''(x) \, dx$ so we can identify $f'(x)$ with the functional

$$C^\infty_c(\mathbb{R}) \ni \phi \quad \mapsto \quad -\int \phi'(x) f''(x) \, dx$$

The advantage of using this functional expression is that it makes sense for f' that are not differentiable.

We refer to this functional as the weak derivative of f.

If this functional extends to all $\phi \in L^1$ then by Riesz representation, $f \in L^1$ s.t. $\nabla (\phi) = \langle \psi, h \rangle = \int \phi(x) f(x) \, dx$.

That is, $f \in L^1$ s.t. $-\int \phi'(x) f(x) \, dx = \int \phi(x) f(x) \, dx$ if we identify $\nabla \psi = h$ and call ψ the weak derivative of f. Dec 4, 2020
Consider the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = |x|$

If $\psi \in C_c^\infty(\mathbb{R})$ then the weak derivative of f

applied to ψ is

$$- \int_\mathbb{R} \psi'(x) f(x) \, dx = - \int_\mathbb{R} \psi'(x) |x| \, dx - \int_\mathbb{R} \psi(x) \, dx$$

$$= - \int_\mathbb{R} \psi(x) \, dx + \int_\mathbb{R} \psi(x) \, dx = \int_\mathbb{R} \psi(x) \, dx$$

Thus the weak derivative of $|x|$ is $\text{sign}(x) = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \end{cases}$

We can keep going, the weak derivative of $\text{sign}(x)$

is the functional $\text{sign}: C_c^\infty(\mathbb{R}) \to \mathbb{R}$

$$\text{sign}(\psi) = \int_\mathbb{R} \psi(x) \, dx$$

$$\Lambda(\psi) = \int_\mathbb{R} \psi(x) \, dx + \int_\mathbb{R} \psi(x) \, dx = 2 \int_\mathbb{R} \psi(x) \, dx = \int_\mathbb{R} \psi(x) \, dx$$

We say that the weak derivative of $\text{sign}(x)$ is

Hence the delta "function" at 0. Of course it isn't

a function, it's a functional.

The functionals on $C_c^\infty(\mathbb{R})$ are known as distributions.

Similarly, if we let $K(\mathbb{R}^n)$ be a multi-index

we say that we let $K(\mathbb{R}^n)$ is D^α computed weakly (distributionally)

if, for all $\psi \in C_c^\infty(\mathbb{R}^n)$, we have

$$\int_{\mathbb{R}^n} D^\alpha \psi \, dx = (-1)^|\alpha| \int_{\mathbb{R}^n} \psi \, dx$$

(In general we define the weak derivative as a functional.)

The k^{th} Sobolev space, for $k \in \mathbb{N}$,

$$H^k(\mathbb{R}^n) = \{ f \in L^2(\mathbb{R}^n) : \forall \alpha \leq k, D^\alpha f \in L^2(\mathbb{R}^n) \}$$
Using the Fourier transform
$$\hat{f}(\xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} f(x) e^{-2\pi i \xi \cdot x} \, dx$$

an equivalent definition is
$$H^k(\mathbb{R}^n) = \{ f \in L^2(\mathbb{R}^n) : p(\xi) \hat{f}(\xi) \in L^2(\mathbb{R}^n) \text{ for polynomial } p \text{ of degree } \leq k \}$$

Sobolev spaces are Hilbert spaces with respect to
$$f, \tilde{f} \in H^k(\mathbb{R}^n), \quad (f, \tilde{f})_{H^k} = \sum_{|\alpha| \leq k} \int \partial^\alpha f \overline{\partial^\alpha \tilde{f}} \, dx$$

An equivalent Hilbert space structure is given by
$$\langle f, \tilde{f} \rangle_{H^k} = \int_{\mathbb{R}^n} \frac{\partial f}{\partial x} \overline{\frac{\partial \tilde{f}}{\partial x}} \left(1 + |x|^2 \right)^{k/2} \, dx$$

This inner product makes sense for $k \in \mathbb{R}$

& the completion of $C_0^\infty(\mathbb{R}^n)$ with respect to the resulting norm is $H^k(\mathbb{R}^n)$, $k \in \mathbb{R}$

If M is a compact manifold $\mathcal{E} \to M \times \mathbb{R}^n$

we choose a Riemannian metric on M & a Hermitian metric on \mathcal{E}

& use these to define an L^2-inner product on sections of \mathcal{E}

The topological space $L^2(M; \mathcal{E})$ is independent of the choice.

We can define $H^k(M; \mathcal{E})$ in two equivalent ways:

1. Pick a finite cover of charts trivializing \mathcal{E}

2. subordinate partition of unity ξ_j & declare $u \in H^k(M; \mathcal{E})$ if $u_j, u \in H^k(\mathbb{R}^n; \mathcal{E})$ \& $\| u \|_{H^k}^2 = \sum_j \| u_j \|_{H^k}^2$
(ii) Pick a metric connection \(\nabla \). Take
\[
\|u\|_{k;E} = \frac{1}{\sqrt{n!}} \int \sum_{|\alpha| \leq k} u_{\alpha} \cdot \Delta^\alpha u^2 \, dx
\]
(if \(k \in \mathbb{N} \)).

Clearly \(H^k(M;\mathbb{E}) \subseteq H^{k'}(M;\mathbb{E}) \) if \(k \geq k' \).

If \(M \) is compact then the inclusion \(H^k(M;\mathbb{E}) \subseteq H^{k'}(M;\mathbb{E}) \)

is a compact operator whenever \(k \geq k' \) (Rellich's Theorem)

(Thus is not an L-version of Arzela-Ascoli).

Recall Fourier inversion says that if
\[
\mathcal{F}(\omega)(x) = \frac{1}{(2\pi)^n} \int \mathcal{F}(\xi) e^{i\xi \cdot x} \, d\xi
\]

then \(\mathcal{F}^* \) is the inverse of \(\mathcal{F} \) (and its adjoint)

as maps between \(\mathcal{L}^1(\mathbb{R}^n) \to \mathcal{L}^\infty(\mathbb{R}^n) \)

or \(\mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n) \).

Here \(\mathcal{S}(\mathbb{R}^n) = \{ f \in C^\infty(\mathbb{R}^n) : \forall \alpha \exists \beta \in \mathbb{N}^n, \forall M, M' \in \mathbb{N} \text{ such that } \| \partial_x^\alpha D_x^\beta f \|_{L^\infty} < M \} \} \)

Let \(\mathcal{S}'(\mathbb{R}^n) \) be the dual space of \(\mathcal{S}(\mathbb{R}^n) \).

These are known as the tempered distributions.

For any two functions \(f, h \in \mathcal{S}(\mathbb{R}^n) \)

the \(L^2 \)-pairing satisfies \((\mathcal{F}(f),h) = (f, \mathcal{F}^*(h)) \).

So if \(\Lambda \) is a tempered distribution

we define \(\mathcal{F}(\Lambda) \) to be the tempered distribution

\[
\mathcal{F}(\Lambda)(f) = \Lambda(\mathcal{F}(f))
\]

Thus if \(\Lambda \) is given by \(\Lambda(h) = (h,f) \)

then \(\mathcal{F}(\Lambda)(h) = \Lambda(\mathcal{F}^*h) = (\mathcal{F}^*h, f) = (h, \mathcal{F}^*(f)) \).

Similarly extending \(\mathcal{F}^* \) to tempered distributions we see

\(\mathcal{F}^* \) holds on \(\mathcal{S}' \).
If \(s > \frac{n}{2} + k \), then \(H^s(\mathbb{R}^n) \subseteq C^k(\mathbb{R}^n) \land L^\infty(\mathbb{R}^n) \)

\[
|f(x)| \leq \frac{1}{(2\pi)^{\frac{n}{2}}} \int \frac{\partial^s f(\xi)}{\partial^s \xi^s} e^{ix \cdot \xi} d\xi \\
\leq \frac{1}{(2\pi)^{\frac{n}{2}}} \int |\partial^s f(\xi)| d\xi \\
\leq \frac{1}{(2\pi)^{\frac{n}{2}}} \int \|\partial^{k+j} f(\xi)\|_1 (1 + |\xi|)^{s-k-j} d\xi \\
\underbrace{\int (1 + |\xi|)^{-s} d\xi}_{\text{finite precisely when } s > \frac{n}{2}}
\]

Similarly, if \(s > \frac{n}{2} + k \), \(k \in \mathbb{N} \) then \(H^s(\mathbb{R}^n) \subseteq C^k(\mathbb{R}^n) \)

In particular, \(H^s(\mathbb{R}^n) \subseteq C^0(\mathbb{R}^n) \)