Math 514

Nov 19, 2020

Last Time:

1) If $E \to M$ is a holomorphic vb over a closed Kähler mfd M, then a Hermitian metric h induce a corr. Chern connection ∇_h.

Then the Dolbeault desc, Frölicher desc, etc. hold for the cohomology of $\mathcal{O}(E)$, with $\Omega^p \cong \Omega^p$.

2) The cohomology class $[\mathcal{O}(E) \cap H^p(M; \mathcal{E})]$ is independent of h.

It obstructs the existence of a Hermitian metric with $\mathcal{D}^{\nabla_h} = 0$.

It is known as the Atiyah class of E, $\alpha(E)$.

Remark: A connection on E is "compatible with the holomorphic" if ∇_h is ∇_e. If furthermore, ∇_e sends holomorphic sections to holomorphic sections (locally) then ∇_h is said to be a "holo. conn."

Atiyah showed that $\alpha(E) = 0$ vanishes iff $E \to M$ admits a holo. conn.

3) For a complex line bundle $E \to M$ (holomorphic or not),

the curvature of a connection \mathcal{D} defines a class in $H^2(M; \mathcal{E})$ independent of the choice of connection.

The 1^{st} Chern class of E is $c_1(E) = \frac{1}{2\pi i} [\mathcal{O}(E) \cap H^2(M; \mathcal{E})]$.

If E is a holo line bundle then the inclusion $H^1(M) \to H^1(M)$

sends $\frac{1}{2\pi i} \alpha(E)$ to $c_1(E)$

since they are represented by the same diff. form.
Rank k, for a C-vb $E \to M$ at rank r, $d^r R^o = 0$

so $[R^o] \in H^r(M; \text{End}(E))$

If $f : M_r(E) \to C$ is a polynomial function s.t. $f(S^r T) = f(T)$
then $f([R^o]) \in H^{2r}(M; C)$ ($= \oplus H^{2r}(M; C)$)

One can show that $d f([R^o]) = 0$

so that $[f([R^o])] \in H^{2r}(M; C)$ is independent of the choice of f

These are called the "characteristic classes of $E"$ (Chern-Weil const.)

Define $c_k(E)$ by $\det (I_T - t \frac{\nabla}{\nabla}) = \sum c_k w t^k$

thus $c_k(E) = [c_k([R^o])] \in H^{2k}(M; C)$ is the kth Chern class of E

Recall that $E \cong V^r \otimes \mathbb{C}$, $E = \phi^* V^r$

\downarrow

$M \to \text{Gr}_r$

In terms of ϕ, $c_k(E) = \phi^* (c_k(V^r)) \cup (c_k(V^r))$ generate $H^{2k}(\text{Gr}_r)$

This time: Positive $d\Omega$ forms

We say that a (real) diff form ω of type $(1,1)$ is positive if $\omega(V\wedge J\omega) > 0$ is positive definite (i.e. a Riemannian metric)

Thus if ω is closed & positive the setting $g(V\wedge J\omega) = \omega(V\wedge J\omega)$

the mfd $(M, J, \omega, d\omega)$ is K-Hermitian
We say that a cohomology class \(c \in H^{1,1}(M; \mathbb{C}) \) is positive if it has a positive representative.

We say that a holomorphic line bundle \(E \rightarrow M \) is positive if its \(1^{\text{st}} \) Chern class is positive.

Let's consider the holomorphic bundles over \(\mathbb{C}P^n \).

First, let's notice that tautological bundles have natural Hermitian metrics. Indeed, if \(E \rightarrow M \) is \(\pi^*(\mathbb{C}^n) \rightarrow \text{Gr}_r(\mathbb{C}^n) \).

Then, by definition \(\pi^*(\mathbb{C}^n) = \{ (W, v) \in \text{Gr}_r(\mathbb{C}^n) \times \mathbb{C}^n : v \in W \} \) is a sub-bundle of the trivial bundle \(\mathbb{C}^n \rightarrow \text{Gr}_r(\mathbb{C}^n) \).

The standard metric on \(\mathbb{C}^n \) induces a bundle metric on \(\pi^*(\mathbb{C}^n) \).

We restrict to a bundle metric on \(\pi^*(\mathbb{C}^n) \rightarrow \text{Gr}_r(\mathbb{C}^n) \).

The Chern connection on \(\pi^*(\mathbb{C}^n) \) is given by \(\omega \).

By the projection \(\pi^* \) onto \(\mathbb{C}^n \).

If \(s : U \rightarrow \mathbb{C}^n \) is a local section, then we can think of it as a map \(s : U \rightarrow \pi^*(\mathbb{C}^n) \).

\[\nabla_{\bar{v}} s = \pi^*(d_s(v)) \]

For the tautological bundle over \(\mathbb{C}P^n \), \(\mathcal{O}_{\mathbb{C}P^n}(-1) \rightarrow \mathbb{C}P^n \), this construction gives a metric ker on \(U \).

\[\text{ker} \frac{dz_1^*}{dz_2^*} \]
Let's spell this out.

On \mathbb{CP}^n, a standard atlas $U_d: \{(z_0, \ldots, z_n) \in \mathbb{CP}^n : z_d \neq 0\}$

has transition function $g_{ap} = \left(\frac{z_d}{z_a}\right)^* = \frac{z_d}{z_a}$

A section of L, $s: \mathbb{CP}^n \to L$

can be decomposed into maps $s_d: U_d \to \mathbb{C}$
such that $s = g_{ap} s_d$

A Hermitian metric on L can similarly be decomposed into

$m_p: U_d \to \mathbb{R}^+$ s.t. $h_p = \frac{1}{g_{ap}} h_d$

for which

$|z|^2 h_p(p) = |s_a(p)|^2 h_d(p)$ if $p \in U_d$

This is well-defined since, if $p \in U_a \cap U_d$, then

$|s_p(p)|^2 h_p(p) = |g_{ap}|^2 |s_d(p)|^2 |g_{ap}|^{-2} h_d = |s_d(p)|^2 h_d(p)$

Now

$h_d(z_0, \ldots, z_n) = 12 \xi^{-2} \left(12z_0^2 \ldots + 12z_n^2\right) = \left(\frac{z_d}{z_a}\right)^2 (\ldots + 12z_i^2)$

satisfies $h_d(z^{\overline{3}}) = \left(\frac{z_d}{z_a}\right)^2 h_d(z^{\overline{3}}) = \frac{1}{g_{ap}} h_d(z^{\overline{3}})$

and hence defines a Hermitian metric on L

In particular, in the chart $\mathbb{C}^n \ni z \to (z_0, \ldots, z_n) \in U_d$

d we have $h_d(z) = 1 + z_d^2 = 1 + \bar{z}\bar{z}$

Recall that locally, the connection form of the Chern connection

associated to h is $\Theta = h^{-1} \partial h$

d the curvature form is $\Omega = \partial \Theta$.
Here we have \(\Theta = \hbar^{-1} \Theta \) where
\[
\Theta = \frac{1}{1 + \|z\|^2} \\
\gamma \text{ is written as locally } \gamma^i = \frac{dz \wedge d\bar{z}}{1 + \|z\|^2} = -\frac{dz \wedge d\bar{z}}{(1 + \|z\|^2)^2} \\
\]
This shows that the tautological line bundle \(\mathcal{L} \to \mathbb{P}^n \) is locally \(\Theta \) negative.

A metric on \(\mathcal{L} = \mathcal{O}(-1) \) induces metrics on \(\mathcal{O}(-k) = \mathcal{O}(-1)^{\otimes k} \) and \(\mathcal{O}(k) = \mathcal{O}(-1)^{k*} \) for \(k > 0 \).

The corresponding Chern connections have curvature on \(\mathcal{O}(k) \)
\[
\Theta_{ik} = \frac{k}{(1 + \|z\|^2)^2} \\
\]
Thus \(\Theta(k) \) is positive if \(k \) is positive.

Hence for \(\mathcal{O}(1) \) we have \(\Theta_{ik} = -\omega_{gs} \), the fundamental form of the Fubini-Study metric.