Last Time: Almost complex structures
If M is a smooth mfld, an almost complex structure is a
bundle map $J: TM \to TM$ s.t. $J^2 = -\text{Id}$
If M is a complex mfld then the underlying smooth mfld
inherits an almost complex structure which is called integrable
If the real dimension of M is two then every a.C-str is integrable
This Time: Newlander-Nirenberg Thm for analytic manifolds
Given J we define
$T^\perp J M = \{ w \in T_0 M : J(w) = -w \}$
N-N then says that J is integrable $\iff T^\perp J M$ is involutive
(i.e., if V, W are sections of TM then so is $[V, W]$)

Let's start by recalling a Thm from differential geometry
Suppose M is a smooth mfld & $E \subset TM$ is a subbundle (of rank k)
We say that
1) E is involutive if the Lie bracket of two sections of E is a section of E
2) E is integrable if each pt of M has a nbhd U & a map $\Phi_u : U \to \mathbb{R}^{2k}$
s.t. $E|_U = \text{Ker } D\Phi_u$
(i.e., each fiber $\Phi_u^{-1}(v)$ is a submfld of U & tangent space $E|_{\Phi_u^{-1}(v)}$)
The Frobenius theorem says that E is involutive $\iff E$ is integrable
Given the Frobenius theorem for smooth manifolds, we can deduce a Frobenius theorem for complex manifolds.

Let \mathcal{M} be a complex n-dimensional C-dim n, $E \in T^{\text{hol}} \mathcal{M}$ a subbundle of \mathcal{C}-rank k. Then E is involutive if \bar{F} is holomorphically integrable (i.e., we have local holomorphic maps $\phi_x: \mathcal{U} \to \mathcal{C}^{n\times k}$ s.t. $E_x = \text{Ker}(D\phi_x)$). Then ϕ is holomorphic.

Theorem: Let $\text{Re} : T^{\text{hol}} \mathcal{M} = T^{\text{hol}} \mathcal{M} \to \mathcal{M}$

$\omega \mapsto \text{Re}(\omega)$

& if E is involutive then so is $\text{Re} E$

Next we want to put a complex structure on $\text{Image}(\phi_x) = V \subseteq \mathbb{C}^{n\times k}$

for which ϕ_x is holomorphic.

We can identify $T\phi_x(\mathcal{U}) V = T\mathcal{U} / \text{Re} E_x$

Since E is a holomorphic subbundle, the integrable \mathcal{C}-str on \mathcal{M} preserves $\text{Re} E$ hence \mathcal{J} descends to \mathcal{V}

Thus $T\phi_x(\mathcal{U}) V$ inherits a complex structure (by the point 3).

Let by construction $D\phi_x$ commutes with \mathcal{J}

so ϕ_x is holomorphic.

We will say that $(\mathcal{M}, \mathcal{J})$ is real analytic if \mathcal{M} has an atlas, whose transition maps are real analytic

& in each of these coordinate charts, \mathcal{J} is a real analytic family of matrices.
Then if J is an almost complex structure on $M \in C.M$ is R-analytic
Then J is integrable iff $T^\alpha M$ (or $T^\beta M$) is involutive.

If (Weit, see Voisin)
It’s enough to work locally, so assume $M = U \subseteq \mathbb{R}^{2n}$ open. $0 \in U$
\tilde{J} is a real analytic matrix-valued map satisfying $\tilde{J}^2 = -\text{Id}$ given
by a convergent power series.

Hence there’s a neighborhood $\tilde{U} \subseteq \mathbb{C}^{2n}$ on which
this power series converges, call the extension \tilde{J}

Let \tilde{E} be the \mathbb{C}-ideal of \tilde{J}

so $E = \tilde{E} \cap \mathbb{C}^{2n}$

Sections of \tilde{E} over \tilde{U} are v of \mathbb{R}^n form $V + i\tilde{J}(V)$

where V is a C-v.f. over \tilde{U}

Hence the involutivity of $T^\alpha U$ implies the involutivity of \tilde{E}

Thus, up to shrinking the nbhd, we know that there exists

a holomorphic function $\Phi: \tilde{U} \rightarrow \mathbb{C}^n$

whose fibers are the integral subvarieties of \tilde{E}, s.t. $\tilde{E} = \ker(D\Phi)$

Now note that U sits in \tilde{U} like $(\mathbb{R}^{2n}, \mathbb{R}^{2n})$ in $(\mathbb{C}^{2n}, \mathbb{C}^{2n})$

\tilde{U} is transverse to \tilde{E} (i.e. $U + \tilde{E}$)

hence the restriction $\Phi | U = \Phi: U \rightarrow \mathbb{C}^n$ is a diffeomorphism.

Finally note that the derivative of Φ

$D\Phi: T_\tilde{U} \rightarrow T_{\mathbb{C}^n}$ identifies \tilde{J} the complex str on \mathbb{C}^n

This, follows from \mathbb{C}-linearity of $T_\tilde{U} \rightarrow T_\tilde{U}/\mathbb{R}E_2$

\tilde{U} in the quotient $T_\tilde{U}/\mathbb{R}E_2$

we have $V = -i\tilde{J}(V)$ i.e. $iV = \tilde{J}(V)$