Linear Algebra: Triangulation

Lecture 22

Last Time: Similar matrices
This Time: The "best" matrix associated to a linear map

The simplest matrices are diagonal.

If \(\mathbb{L}(V) \) is diagonalizable,

\(\Rightarrow \) there is a basis of \(V \) consisting of eigenvectors of \(\mathbb{T} \).

\(\mathbb{A} \in M_n(\mathbb{F}) \) is diagonalizable

\(\Rightarrow \) there is a basis of \(\mathbb{F}^n \) consisting of eigenvectors of \(\mathbb{A} \).

In some ways, an upper triangular matrix is as simple as a diagonal one.

1) if \(\mathbb{A} \) is upper triangular then

i) if there are no zeros on the diagonal, then \(\mathbb{A} \) is in \(\mathbb{R} \text{E} \) \(\mathbb{F}^{t} \text{A} \) pivot in every column.

ii) if there are zeros on the diagonal, then the column containing the first zero on the diagonal does not have a pivot.

iii) eigenvalues of \(\mathbb{A} \) = diagonal entries of \(\mathbb{A} \).

There are matrices that do not have eigenvalues.

E.g., \(\mathbb{A} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \in M_2 (\mathbb{R}) \)

If \(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \lambda \begin{bmatrix} a \\ b \end{bmatrix} \equiv \begin{bmatrix} \lambda a \\ \lambda b \end{bmatrix} \Rightarrow \lambda = \lambda \mathbb{A} \mathbb{B} = \lambda (-\mathbb{A}) = -\lambda \mathbb{A} \)

\(\lambda^2 + 1 \mathbb{A} + \mathbb{B} = 0 \) & since \(\lambda^2 + 1 \neq 0 \) \(\forall \lambda \in \mathbb{R} \Rightarrow \mathbb{A} = 0, \mathbb{B} = 0 \).
Def A field \mathbb{F} is algebraically closed if every polynomial of degree $n > 0$

can be factored in the form

$$p(x) = b(x-c_1) \cdots (x-c_n)$$

for some $b, c_1, \ldots, c_n \in \mathbb{F}$.

Thm (Fund. Thm of Algebra) \mathbb{C} is an algebraically closed field.

Prop If V is a vector space of positive finite dim. over an algebraically closed field \mathbb{F}, every $T \in \mathcal{L}(V)$ has an eigenvalue.

Pf Let $n = \dim V > 0$, let $v \in V, v \neq 0$.

The list $(v, T(v), T^2(v), \ldots, T^n(v))$ has $n+1$ vectors, so it is lin. dep.

There are constants $a_0, \ldots, a_n \in \mathbb{F}$ not all zero s.t.

$$a_0 v + a_1 T(v) + \ldots + a_n T^n(v) = 0.$$

Suppose a_k is the last coeff not equal to zero (i.e., $a_{k+1} = 0$).

Let $p(x) = a_0 + a_1 x + \ldots + a_k x^k$.

Then $p(x)$ has degree k and $p(T)(v) = a_0 v + a_1 T(v) + \ldots + a_k T^k(v) = 0$.

Since \mathbb{F} is alg. closed we can factor p.

$$p(x) = b(x-c_1) \cdots (x-c_k)$$

for some $b, c_1, \ldots, c_k \in \mathbb{F}$.

Hence $0 = a_0 v + a_1 T(v) + \ldots + a_k T^k(v) = b(T-c_1 I)(T-c_2 I) \cdots (T-c_k I)(v)$.

If $(T-c_k I)(v) = 0$ then v is an eigenvector of T and eigenvalue c_k.

Otherwise, let $v' = (T-c_k I)(v) \neq 0$.

This satisfies $(T-c_1 I) \cdots \underline{(T-c_{k-1} I)}(v') = 0$.

Continuing in this way we eventually have $w \neq 0$ s.t. $(T-c I)(w) = 0$.

Hence at least one of the c_i is an eigenvalue of T. \(_\square\)
E.g., $A = \begin{bmatrix} i & -1 \\ -2 & i \end{bmatrix} \in M_2(\mathbb{C})$. Let's start with $v = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

The set $\{v, Av, A^2v\} = \{\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ i \end{bmatrix}, \begin{bmatrix} 1 \\ -i \end{bmatrix}\}$ is lin. dep.

Indeed, $v + A^2v = 0 = (I + A^2)(v)$.

The polynomial $1 + x^2$ factors as $(x-i)(x+i)$

so $(A-i\text{Id})(A+i\text{Id})(v) = 0$.

Either $(A-i\text{Id})(v) = 0$ or $(A+i\text{Id})(v) = v \neq 0$

v is an eigenvector \Rightarrow eigenvector $-i$

or $(A-i\text{Id})(v) = 0$ so v' is an eigenvector \Rightarrow eigenv. i

In this case $(A+i\text{Id})[1] = \begin{bmatrix} -i & 1+i \\ 1+i & -i \end{bmatrix} \neq 0$

& $A[\begin{bmatrix} -i \\ 1 \end{bmatrix}] = \begin{bmatrix} -1 \\ -i \end{bmatrix} = i[\begin{bmatrix} 1 \\ -i \end{bmatrix}]$ as expected.

Rank: $T \mathbb{C}^2(v) A \mathbb{C}^2(v) = \{v_1, \ldots, v_n\}$ is a basis of V

The $[T]_{\mathbb{C}^n}$ upper triangular $\Rightarrow T(v_j) \in \langle v_1, \ldots, v_{j-1} \rangle \forall j$.

Thm: If V is a fin. dim. vector space over an alg. closed field F & $T \in \mathcal{L}(V)$

there is a basis \mathcal{B} of V s.t. $[T]_{\mathcal{B}}$ is upper triangular.

Pf: Induction over $n = \dim V$. For $n = 0$ or 1 the theorem is obvious.

Suppose the theorem is known for spaces of dimension less than n.

From the proposition we know that there is $v \neq 0$ s.t. $T(v) = \lambda v$.

Let $U = \text{Range } (T-\lambda \text{Id})$

Note that T restricts to a linear map $U \to U$.

Indeed, if $v \in U$ then $T(v) = (T-\lambda \text{Id})(v) + (\lambda \text{Id})(v)$.

On the other hand, since λ is an eigenv. $T-\lambda \text{Id}$ is not injective.

By the rank-nullity theorem, $T-\lambda \text{Id}$ is not surjective, so $\text{null } U < n$.
Since \(T|_{U} \in L(U) \) and \(\dim U < n \)
by inductive hypothesis we can find \(\mathcal{B}_U = \{u_1, \ldots, u_n\} \)
a basis of \(U \) s.t. \(T(u_j) \in \langle u_1, \ldots, u_j \rangle \) \(\forall j \).

Extend \(\mathcal{B}_U \) to a basis \(\mathcal{B} = \{u_1, \ldots, u_m, v_1, \ldots, v_k\} \) of \(V \).

Note that, for any \(j \in \{1, \ldots, k\} \),

\[
T(v_j) = (I - \lambda I) v_j + \lambda I v_j \in \langle u_1, \ldots, u_m, v_j \rangle \subseteq \langle u_1, \ldots, u_m, v_1, \ldots, v_k \rangle
\]

\(\in U \)

hence \([T]_{\mathcal{B}} \) is upper triangular.

Corollary If \(F \) is alg. closed, \(A \in M_n(F) \), \(p \) is a polynomial
with coefficients in \(F \).

The eigenvalues of \(p(A) \) are of the form \(p(\lambda) \) where \(\lambda \) is an eigenvalue of \(A \).