LINEAR ALGEBRA

RANK-NULLITY THM

LECTURE 18

LAST TIME: Dimension

THIS TIME: Dimensions of subspaces associated to a linear transformation

If \(V, W \) are vector spaces over a field \(F \), \(T \in \mathcal{L}(V,W) \), we have defined
\[
\ker(T) \subseteq V \quad \& \quad \text{Range}(T) \subseteq W
\]
and seen that these are subspaces.
Their dimensions are called \(\text{rank}(T) = \dim \text{Range}(T) \)
\& \(\text{null}(T) = \text{nullity}(T) = \dim \ker(T) \).

If \(A \) is a matrix & \(T \) is the associated linear map,
then \(\text{rank}(A) = \text{rank}(T) = \dim C(A) \)
\& \(\text{null}(A) = \text{null}(T) = \dim \ker(A) \).

Thm (Rank-Nullity Theorem)
If \(A \in \mathcal{M}_{m \times n}(F) \) then \(\text{rank}(A) + \text{null}(A) = n \).
More generally, whenever \(T \in \mathcal{L}(V,W) \) and \(\dim V < \infty \),
\(\text{rank}(T) + \text{null}(T) = \dim V \).

PF
We'll give one proof for matrices & then one proof for general linear maps, but note that the statement for linear maps includes the case of matrices.
So consider $A \in M_{m,n}(\mathbb{F})$.

We know that

\[
\text{rank}(A) = \dim \text{C}(A) = \# \text{ of pivots in } \text{RREF}(A)
\]

\[
\text{null}(A) = \dim \text{ker}(A) = \dim \{x \in \mathbb{F}^n : Ax = 0\}.
\]

Suppose, for simplicity, that the pivot variables of \(\text{RREF}[A:0] \) are \(x_1, \ldots, x_k \) and \(x_{k+1}, \ldots, x_n \) are free.

Then we can write the elements of \(\text{ker}(A) \) as linear combinations of vectors with coefficients \(x_{k+1}, \ldots, x_n \):

\[
\text{ker}A = \left\{ \begin{bmatrix} x_1 \\ x_k \\ \vdots \\ x_{k+1} \\ \vdots \\ x_n \end{bmatrix} \left[\begin{bmatrix} c_1 \\ \vdots \\ c_k \\ \vdots \\ c_{k+1} \\ \vdots \\ c_n \end{bmatrix} \right] x_1 + \left[\begin{bmatrix} c_1 \\ \vdots \\ c_k \\ \vdots \\ c_{k+1} \\ \vdots \\ c_n \end{bmatrix} \right] x_2 + \ldots + \left[\begin{bmatrix} c_1 \\ \vdots \\ c_k \\ \vdots \\ c_{k+1} \\ \vdots \\ c_n \end{bmatrix} \right] x_n : x_{k+1}, \ldots, x_n \in \mathbb{F} \right\}
\]

so \(\text{null}(A) = \dim \text{ker}(A) = \# \text{ free variables in } Ax = 0 \).

Thus \(\text{rank}(A) + \text{null}(A) = \# \text{ cols. w/ pivots} + \# \text{ cols. w/o pivots} = \# \text{ cols. of } A = n \).

Now for the general case, consider \(T \in L(V, W), \dim V = m \).

Since \(\text{ker}(T) \subseteq V \), \(\text{ker}(T) \) is finite dimensional.

Let \(\mathcal{B} = (u_1, \ldots, u_k) \) be a basis of \(\text{ker}(T) \).

& extend it to \(\mathcal{B}' = (u_1, \ldots, u_k, v_1, \ldots, v_l) \) a basis of \(V \).

Claim: \(\{T(v_1), \ldots, T(v_l)\} \) is a basis of \(\text{Range}(T) \).

Once we establish the claim, we will be done.

Since then \(\text{null}(T) + \text{rank}(T) = k + l = \dim V \).
To establish the claim, we need to show that
\[\{T(v_1), \ldots, T(v_k)\} \text{ is lin. indep \& spans } \text{Range}(T). \]
To check lin. ind., assume
\[0 = a_1 T(v_1) + \cdots + a_k T(v_k) = T(a_1 v_1 + \cdots + a_k v_k). \]

This implies
\[a_1 v_1 + \cdots + a_k v_k \in \ker(T) = \langle cd \rangle, \]
hence there are coefficients \(b_1, \ldots, b_k \in \mathbb{F} \) s.t.
\[a_1 v_1 + \cdots + a_k v_k = b_1 u_1 + \cdots + b_k u_k. \]

Writing this as
\[a_1 v_1 + \cdots + a_k v_k - b_1 u_1 - \cdots - b_k u_k = 0, \]
and using linear independence of \(\langle cd \rangle \), we see that
\[a_1 = 0, \ldots, a_k = 0, b_1 = 0, \ldots, b_k = 0 \] as required.

To see that \(\{v\} \) spans \(\text{Range}(T) \), consider \(w \in \text{Range}(T) \).
There must be a \(v \in V \) such that \(T(v) = w \), and
writing
\[v = c_1 u_1 + \cdots + c_k u_k + d_1 v_1 + \cdots + d_k v_k \]
we find that
\[w = T(c_1 u_1 + \cdots + c_k u_k + d_1 v_1 + \cdots + d_k v_k) = c_1 T(u_1) + \cdots + c_k T(u_k) + d_1 T(v_1) + \cdots + d_k T(v_k) = d_1 T(v_1) + \cdots + d_k T(v_k) \]
and so \(w \in \text{Range}(T) \). \(\square \)
Corollary If \(T \in \mathcal{L}(V, W) \) and \(\dim V = \dim W < \infty \), then the following are equivalent:

i) \(T \) is injective,
ii) \(T \) is surjective,
iii) \(T \) is an isomorphism.

Pf

\(T \) is injective \(\iff \) \(\text{null}(T) = \{0\} \iff \text{rank}(T) = \dim V = \dim W \iff T \) is surjective.

Corollary If \(T \in \mathcal{L}(V, W), \ S \in \mathcal{L}(W, V) \), and \(\dim V = \dim W < \infty \), then the following are equivalent:

i) \(S \circ T = \text{Id} \),
ii) \(T \circ S = \text{Id} \),
iii) \(S = T^{-1} \).

Pf

\(S \circ T = \text{Id} \Rightarrow S \) surjective \(\Rightarrow S \) invertible
\& \(S^{-1} = S^{-1} S T = T \).

The rank of a matrix is the same as the rank of its transpose.

Indeed, given \(A \in M_{m \times n}(F) \), the span of the columns of \(A^T, \text{C}(A^T) \), is the span of the rows of \(A \).
This span doesn't change when we apply row operations to \(A \), so is also the span of the rows of \(\text{RREF}(A) \).
So its dimension equals the number of pivots in \(\text{RREF}(A) \) and this is the rank of \(A \).
Since \(\text{rank}(A) = \text{rank}(A^T) \),
the rank-nullity theorem guarantees that
for square matrices, \(\text{null}(A) = \text{null}(A^T) \).

In particular, if \(A \in \mathbb{M}_n(\mathbb{F}) \) then
\(\lambda \) is an eigenvalue of \(A \)
\(\Leftrightarrow \text{null}(A - \lambda I_n) > 0 \)
\(\Leftrightarrow \text{null}(A - \lambda I_n)^T > 0 \)
\(\Leftrightarrow \text{null}(A^T - \lambda I_n) > 0 \Leftrightarrow \lambda \) is an eigenvalue of \(A^T \).

Finally, recall that the solution set \(S \)
of a linear system of equations \(Ax = b \)
is an affine space of the form
\(S = x_0 + \text{Ker } A \), with \(x_0 \) any particular solution.
The nullity of \(A \) tells us the dimension of \(S \).