Last time we proved that if
\[V = \text{span} \{ v_1, \ldots, v_m \} \quad \text{and} \quad \{ w_1, \ldots, w_n \} \subseteq V \] is linearly independent then \(m \geq n \). It follows that any two bases of \(V \) must have the same number of elements.
We call this number the dimension of \(V \).

E.g., the canonical basis of \(\mathbb{F}^n \), \((e_1, \ldots, e_n) \), has \(n \) elements, so \(\dim \mathbb{F}^n = n \).

\[\mathbb{P}_n(\mathbb{R}) = \text{polynomials of degree at most } n \text{ with real coefficients} \]
has basis \((1, x, \ldots, x^n) \) and hence has dimension \(n+1 \).

Note that for a matrix \(A \in \mathcal{M}_{m \times n}(\mathbb{F}) \)
the dimension of its column space, \(\text{col}(A) \), is equal to the number of pivots in \(\text{REF}(A) \).

Clearly, if
\[V = \text{span} \{ v_1, \ldots, v_m \} \quad \text{and} \quad \{ w_1, \ldots, w_n \} \subseteq V \] is linearly independent then \(n \leq \dim V \leq m \).
Interestingly, if \(U_1, U_2 \) are subspaces of \(V \) and \(\dim U_1 + \dim U_2 > \dim V \), then \(U_1 \cap U_2 \neq \{0\} \).

Indeed, let's check the contrapositive:
If \(U_1, U_2 \) are subspaces of \(V \) s.t. \(U_1 \cap U_2 = \{0\} \), then \(\dim U_1 + \dim U_2 \leq \dim V \).

Proof

Let \((v_1, \ldots, v_r) \) be a basis of \(U_1 \)

and \((w_1, \ldots, w_s) \) be a basis of \(U_2 \).

We'll check that \(\{ v_1, \ldots, v_r, w_1, \ldots, w_s \} \) is linearly independent.

Suppose \(\sum_{i=1}^{r} a_i v_i + \sum_{k=1}^{s} b_k w_k = 0 \) then \(\sum_{i=1}^{r} a_i v_i = -\sum_{k=1}^{s} b_k w_k \in U_1 \cap U_2 \)

implies \(\sum_{i=1}^{r} a_i v_i = 0 \) & \(\sum_{k=1}^{s} b_k w_k = 0 \), and hence \(a_i = 0, b_k = 0 \) for all \(i \) and \(k \).

It turns out that the dimension is the only thing that distinguishes finite dimensional vector spaces, up to isomorphism.

Then let \(V \) and \(W \) be finite-dimensional vector spaces over \(\mathbb{F} \).

\(V \) and \(W \) are isomorphic if and only if \(\dim V = \dim W \).

Proof

\(\Rightarrow \) If \(T \in \mathcal{L}(V, W) \) is an isomorphism & \((v_1, \ldots, v_m) \) is a basis of \(V \), then \((T(v_1), \ldots, T(v_m)) \) is a basis of \(W \) & \(\dim V = \dim W \).

\(\Leftarrow \) If \(\dim V = \dim W \), \((v_1, \ldots, v_m) \) is a basis of \(V \), and \((w_1, \ldots, w_n) \) is a basis of \(W \) then there is \(T \in \mathcal{L}(V, W) \) such that \(T(v_i) = w_i \forall i \).

Since \(T \) sends a basis of \(V \) to a basis of \(W \), it is an isomorphism.
In particular, every finite dimensional vector space V is isomorphic to \mathbb{F}^n, with $m = \dim V$.

If $\dim V = m$ and $V = \langle v_1, \ldots, v_m \rangle$

then (v_1, \ldots, v_m) is a basis of V.

Indeed, we have shown that any list of vectors that spans V contains a sublist that is a basis of V. Since a basis has exactly m elements, it must be the whole list.

Thus, if V is finite dimensional and $\mathcal{B} \subseteq V$ is a linear list then \mathcal{B} can be extended to a basis of V.

Proof: Suppose $\mathcal{B} = (v_1, \ldots, v_n)$.

If $\langle v_1, \ldots, v_n \rangle = V$ then \mathcal{B} is a basis and we’re done.

Otherwise, pick $v_n \in V \setminus \langle v_1, \ldots, v_n \rangle$ and add it to \mathcal{B}.

Note that \mathcal{B} is still linearly independent.

We can keep adding vectors like this until \mathcal{B} has length $\dim V$, at which point it will be a basis of V.

Thm If \(V \) is finite dimensional and \(U \subseteq V \) is a subspace, then
\[i) \ U \text{ is finite dimensional}, \]
\[ii) \ \dim U \leq \dim V, \text{ and} \]
\[iii) \ \text{if} \ \dim U = \dim V \text{ then} \ U = V. \]

Pf
\[i) \ \text{If} \ U = \{0\} \text{ then we are done, otherwise pick} \ u \in U \setminus \{0\}. \]
\[\text{If} \ U = \langle u \rangle \text{ then we are done, otherwise pick} \ u \in U \setminus \langle u \rangle. \]
Continuing in this way we build successively larger linear subsets of \(U \).
The size of these sets is bounded above by \(\dim V \), so the process must stop after finitely many steps. At that point the linear set must also span \(U \).
\[ii) \ \text{If} \ \{u_1, \ldots, u_n\} \subseteq U \subseteq V \text{ is linearly independent then} \ n \leq \dim V. \]
\[iii) \ \text{If in} \ (ii), \ n = \dim V, \text{ then} \ (u_1, \ldots, u_n) \text{ is a basis of} \ V. \]

Ex. Every subspace of \(\mathbb{R}^3 \) must have dimension 0, 1, 2, or 3.
So the subspaces of \(\mathbb{R}^3 \) are either
the origin, a line through the origin, a plane through the origin, or all of \(\mathbb{R}^3 \).