Linear Algebra Fields Lecture 4

Last Time: The geometry of linear systems
This Time: Systems with different coefficients

So far we’ve been studying linear systems of equations over the real numbers: the coefficients & the solutions have been real numbers.

Actually, the examples we’ve been working with haven’t used any numbers like π or √2.
We’ve been working with integers & fractions
\[\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} \]
The coefficients have been \(\mathbb{Q} \)-numbers & the solutions.
This is bound to happen since the way we solve equations using row operations (adding a multiple of one eq to another, multiplying an eq by a non-zero scalar, switching the order of equations) doesn’t leave the realm of fractions (\(\mathbb{Q} \)-numbers) as long as the scalars we use are rational numbers.
Alternately, it could be useful to consider equations in which the coefficients are C-numbers. Or, especially when thinking about computer science, to consider equations in “binary” where the coefficients & solutions can only be 0 or 1. Most generally, we can consider equations over a field \mathbb{F}.

A field is a set with two operations $+ \cdot$

and two distinguished elements $0 \cdot 1$ s.t.

\mathbb{F} is closed under $+ \cdot$ s.t. $a, b \in \mathbb{F} \Rightarrow a + b \in \mathbb{F}, a \cdot b \in \mathbb{F}$

$+ \cdot$ are associative: $a, b, c \in \mathbb{F} \Rightarrow (a + b) + c = a + (b + c)$

$\cdot (a \cdot b) \cdot c = a \cdot (b \cdot c)$

$+ \cdot$ are commutative: $a, b \in \mathbb{F} \Rightarrow a + b = b + a, ab = ba$

\cdot have identities (neutral elements): $a \in \mathbb{F} \Rightarrow a + 0 = 0 + a = a \;& a \cdot 1 = 1 \cdot a = a$

\cdot have inverses: $\forall a \in \mathbb{F}$ there is an additive inverse $-a \in \mathbb{F}$ s.t. $a + (-a) = (-a) + a = 0$

$\forall a \in \mathbb{F} \setminus \{0\}$ there is a multiplicative inverse $a^{-1} \in \mathbb{F}$ s.t. $a \cdot (a^{-1}) = (a^{-1}) \cdot a = 1$

$+ \cdot$ distribute: $\forall a, b, c \in \mathbb{F}, a \cdot (b + c) = a \cdot b + a \cdot c$

So a field is a bunch of things you can add, multiply, subtract & divide.
E.g., \(\mathbb{C} = \{a+ib : a, b \in \mathbb{R} \} \) just like \(\mathbb{R} \)-numbers but \(i^2 = -1 \)
- \((a+ib) = -a-ib \) if \(a+ib \neq 0 \) (i.e., \(a \neq 0 \) or \(b \neq 0 \) (or both))
 then \((a+ib)^{-1} = \frac{a-ib}{a^2+b^2} \)

E.g., \(\mathbb{Q} = \{\frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} \) with the same operations as \(\mathbb{R} \)

E.g., \(\mathbb{F}_2 = \{0, 1\} \) field of two elements

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

every element is its own additive inverse

the only non-zero element, 1, is its own multiplicative inverse

(Similarly, for any prime \(p \), there is a field \(\mathbb{F}_p = \{0, 1, \ldots, p-1\} \).

What are its operations?

Many "obvious" facts about arithmetic work in general fields.
See Thm 1.5 in the book; the proofs are fun!
For example: there is only one additive identity (i.e., zero)
Since, if \(0_1 \neq 0_2 \) are both additive identities
then \(0_1 = 0_1 + 0_2 = 0_2 \)
 \(\because 0_1 \) is neutral \(\uparrow \)
 \(\because 0_2 \) is neutral \(\Downarrow \)

Another example: if \(a \cdot b = 0 \) in a field \(\mathbb{F} \) then \(a = 0 \) or \(b = 0 \) (or both)
Indeed, if \(a \neq 0 \) then it has a multiplicative inverse \(a^{-1} \)
\(\because\) hence \(a^{-1} \cdot (a \cdot b) = a^{-1} \cdot 0 = 0 \)
but \(a^{-1} \cdot (a \cdot b) = (a^{-1} \cdot a) \cdot b = 1 \cdot b = b \), so \(a \neq 0 \Rightarrow b = 0 \)
A linear system over \mathbb{F} of m equations in n variables is a set of equations of the form
\[
\begin{align*}
& a_{11}x_1 + \ldots + a_{1n}x_n = b_1, \\
& \vdots \\
& a_{m1}x_1 + \ldots + a_{mn}x_n = b_m
\end{align*}
\]
where $a_{ij} \in \mathbb{F}$ for (i,j), $1 \leq i \leq m$, $1 \leq j \leq n$.

The products and sums use the operations in \mathbb{F}.

We solve this as before by forming the augmented matrix A using row operations (which make sense in any field) to put the matrix into RREF.

E.g., Find the RREF of \[
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]
over \mathbb{R} and over \mathbb{F}_2.

1) Over \mathbb{R}: change order
\[
\begin{bmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]
add multiple of R_1 to R_3
\[
\begin{bmatrix}
0 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]
pick multiple \[
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]
add multiple of R_2 to R_3.

1) Over \mathbb{F}_2: change order
\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]
add multiple of R_1 to R_3
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{bmatrix}
\]
add multiple of R_2 to R_1.

No further operations are needed since the matrix is in RREF.
What does this example say about systems of equations?

The system \[\begin{align*}
 y &= 1 \\
 x &= 1 \\
 x + y &= 0
\end{align*} \] does not have solutions over \(\mathbb{R} \).

The system \[\begin{align*}
 y &= 1 \\
 x &= 1
\end{align*} \] does have a solution over \(\mathbb{F}_2 \).

Note that, since \(\mathbb{F}_2 \) is finite,

every (finite) system of equations has at most a finite number of solutions.

On the other hand, since \(\mathbb{R} \) is infinite,

there can be infinitely many solutions to a finite system of equations.