Last Time: Bases & Linear Maps
This Time: Dimension

Last time we proved that if \(\{v_1, \ldots, v_m, w_1, \ldots, w_n\} \subseteq V \) are s.t. \(\{v_1, \ldots, v_m\} \) spans \(V \) & \(\{w_1, \ldots, w_n\} \) is l. i. in \(V \), then \(m \leq n \).

It follows that if \(\{v_1, \ldots, v_m\} \) & \(\{w_1, \ldots, w_n\} \) are bases of \(V \), then \(m \geq n \) & \(m \leq n \) so \(m = n \).

Thus, this common value is the dimension of \(V = \dim V \).

Example: The canonical basis of \(\mathbb{F}^n \), \(\{e_1, \ldots, e_n\} \), has length \(n \), so \(\dim \mathbb{F}^n = n \).
- \(\mathbb{P}_n(\mathbb{R}) \) = polynomials \(f \) real coefficients of degree at most \(n \) has basis \(\{1, x, \ldots, x^n\} \) & hence has dimension \(n + 1 \).

Clearly, if \(\{v_1, \ldots, v_m\} \subseteq V \) then \(\dim V \leq m \).
& if \(\{w_1, \ldots, w_n\} \) is l. i. in \(V \), then \(\dim V \geq n \).

Interestingly, if \(U_1, U_2 \) are subspaces of \(V \),
then \(\dim U_1 + \dim U_2 > \dim V \) then \(U_1 \cap U_2 \neq \{0\} \).

Indeed, let's check the contrapositive: If \(U_1, U_2 \) are subspaces of \(V \) s.t. \(U_1 \cap U_2 = \{0\} \) then \(\dim U_1 + \dim U_2 \leq \dim V \).

Let \(\{v_1, \ldots, v_p\} \) be a basis of \(U_1 \) & \(\{w_1, \ldots, w_q\} \) be a basis of \(U_2 \).
Let's check that \(\{v_1, \ldots, v_p, w_1, \ldots, w_q\} \) is l. i. in \(V \).
If \(\sum_{i=1}^{p} a_i v_i + \sum_{j=1}^{q} b_j w_j = 0 \) for scalars \(a_1, \ldots, a_p, b_1, \ldots, b_q \),
then \(\sum_{i=1}^{p} a_i v_i = -\sum_{j=1}^{q} b_j w_j \in U_1 \cap U_2 = \{0\} \Rightarrow \sum_{i=1}^{p} a_i v_i = 0 \Rightarrow a_i = 0 \forall i, \sum_{j=1}^{q} b_j w_j = 0 \Rightarrow b_j = 0 \forall j \).
Thus, \(\{v_1, \ldots, v_p, w_1, \ldots, w_q\} \) is a linearly independent subset of \(V \).

It turns out that the dimension is the only thing that distinguishes vector spaces up to isomorphism.

Then let \(V \) and \(W \) be finite-dimensional vector spaces over \(\mathbb{F} \).

Then \(\dim V = \dim W \) if and only if \(V \) is isomorphic to \(W \).

If \(\dim V = \dim W = n \), pick bases \(\{v_1, \ldots, v_n\} \) of \(V \)

and \(\{w_1, \ldots, w_n\} \) of \(W \).

Define \(T : \mathcal{L}(V,W) \) by demanding \(T(v_i) = w_i \) \(\forall i \)

and extending by linearity.

Since \(T \) sends a basis to a basis, it is an isomorphism.

On the other hand, since an isomorphism sends a basis to a basis, isomorphic spaces must have the same dimension.

In particular, every \(n \)-dimensional vector space is isomorphic to \(\mathbb{F}^n \).

1) Note that for a matrix \(A \),

the dimension of its column space is the number of pivots in its \(\text{RREF} \).

2) If \(\dim V = n \) and \(V = \langle v_1, \ldots, v_n \rangle \)

then \(\{v_1, \ldots, v_n\} \) is a basis of \(V \).

Indeed, we have shown that any list that spans contains a sublist that is a basis.

Counting dimensions, here it must be the entire list.
Math 416

Theorem If V is a finite-dimensional vector space & $S \subseteq V$ is a linearly independent list then S can be extended to a basis.

Proof Suppose $S = \{v_1, \ldots, v_m\}$

If $V = \langle v_1, \ldots, v_m \rangle$ then S is a basis & we're done.

Otherwise we can find $v_{m+1} \in V \setminus \langle v_1, \ldots, v_m \rangle$ & the list $\{v_1, \ldots, v_{m+1}\}$ is linearly independent.

We can keep adding vectors like this until we've found a list of length $\dim V$ of linearly independent vectors.

In particular, if $\dim V = n$, any list of n vectors in V that is linearly independent must be a basis of V.

Theorem Suppose V is a finite dimensional vector space & $U \subseteq V$ is a subspace.

i) U is finite dimensional
 a) $\dim U \leq \dim V$
 b) If $\dim U = \dim V$ then $U = V$

Proof

i) If $U = \{0\}$ we're done.

Otherwise pick $u \in U \setminus \{0\}$ so that $\{u\}$ is linearly independent.

If $U = \langle u \rangle$ we're done.

Otherwise pick $v \in U \setminus \langle u \rangle$ so that $\{u, v\}$ is linearly independent.

In this way we can keep building a linearly independent list of vectors in U & since $U \subseteq V$ any such list T can have at most $\dim V$ vectors, so at some point we must have $U = \langle u_1, \ldots, u_k \rangle$

i) $\{u_1, \ldots, u_k\} \subseteq V$ is linearly independent so $k \leq \dim V$

ii) If $k < \dim V$ then $V = \langle u_1, \ldots, u_k \rangle = U$

Ex. In \mathbb{R}^3 subspaces are $\{0\}$, line through 0, plane through 0, all of \mathbb{R}^3.