LAST TIME: Bases
This Time: Bases & Linear Maps

Recall that \(\{v_1, \ldots, v_n \} \) is a basis of \(V \)

(1) The span of \(\{v \} \) is \(V \) & (2) \(\{v \} \) is linearly independent

Every \(u \in V \) can be written in \(\{v_1, \ldots, v_n \} \)

as a linear combination of \(\{v_1, \ldots, v_n \} \).

From this characterization we see that a linear map

is determined by what it does to the elements of a basis.

Thus suppose \(\{v_1, \ldots, v_n \} \) is a basis for \(V \)

& let \(\{w_1, \ldots, w_m \} \subseteq W \) be any vectors in \(W \)

Then there is a unique linear map \(T \in \mathbb{L}(V, W) \) s.t. \(T(v_i) = w_i \) \(\forall i \).

pf

First let's show that there is such a map.

Given \(u \in V \), write it as a lin comb of \(\{v_1, \ldots, v_n \} \),

\(u = \sum_{j=1}^{n} c_j v_j \)

& define \(T(u) \in W \) to be \(T(u) = \sum_{j=1}^{n} c_j w_j \).

This sends \(v_j \) to \(w_j \), so we just need to check that it is linear.

Given \(u_1, u_2 \in V \), cf F we need to show that \(T(u_1 + c_1 u_2) = T(u_1) + c_1 T(u_2) \).

Write \(u_1 = \sum_{j=1}^{n} a_j v_j \) \(u_2 = \sum_{j=1}^{n} b_j v_j \).

Then the (unique) way to write \(u_1 + c_1 u_2 \) as a lin comb of \(\{v_1, \ldots, v_n \} \)

is \(u_1 + c_1 u_2 = \sum_{j=1}^{n} (a_j + c_1 b_j) v_j \).

& we have \(T(u_1 + c_1 u_2) = \sum_{j=1}^{n} (a_j + c_1 b_j) w_j \)

\(= \sum_{j=1}^{n} a_j w_j + c_1 \sum_{j=1}^{n} b_j w_j = T(u_1) + c_1 T(u_2) \).
This shows that there is a linear map \(T \) s.t. \(T(v_j) = v_j \) \(\forall j \).

To see that it is the only map \(T \) with this property, notice that if \(S \in \mathcal{L}(V, W) \) has this property and \(u \in V \) is equal to \(\frac{1}{j} c_j v_j \) we have

\[
S(u) = S\left(\sum_{j=1}^{n} c_j v_j \right) = \sum_{j=1}^{n} c_j S(v_j) = \sum_{j=1}^{n} c_j v_j = T(u) \quad \|
\]

The short-hand for this construction is to say: "We demand \(T(v_j) = v_j \) \(\forall j \) and then we extend by linearity.

One way of showing that two linear maps \(S, T \in \mathcal{L}(V, W) \) are the same is to find a basis \(\{v_1, ..., v_n\} \) of \(V \) s.t. \(S(v_j) = T(v_j) \) \(\forall j \).

Thus let \(T \in \mathcal{L}(V, W) \) and let \(\{u_1, ..., u_n\} \) be a basis of \(V \).

\(T \) is an isomorphism if and only if \(\{T(u_1), ..., T(u_n)\} \) is a basis of \(W \).

Proof:

(\(\Rightarrow \)) Assume \(T \) is an isomorphism.

We want to show that \(\{T(u_1), ..., T(u_n)\} \) is a basis of \(W \).

In fact, we want to show that:

(i) \(\{T(u_1), ..., T(u_n)\} \) spans \(W \).

(ii) \(\{T(u_1), ..., T(u_n)\} \) is linearly independent.

(i) Given \(u \in W \), since \(T \) is surjective, there is a \(\bar{u} \in V \) s.t. \(T(\bar{u}) = u \).

Write \(u = \sum_{j=1}^{n} c_j v_j \) and then \(u = T(\bar{u}) = \sum_{j=1}^{n} c_j T(v_j) \).

And so \(\{T(v_1), ..., T(v_n)\} \) spans \(W \).

(ii) Assume \(\sum_{j=1}^{n} a_j T(v_j) = 0 \) we need to show \(a_j = 0 \) \(\forall j \).

And indeed \(\sum_{j=1}^{n} a_j T(v_j) = T(\sum_{j=1}^{n} a_j v_j) = 0 \Rightarrow \sum_{j=1}^{n} a_j v_j \in \ker T = \{0\} \).

So \(\sum_{j=1}^{n} a_j v_j = 0 \) and since \(\{v_1, ..., v_n\} \) is linearly independent \(\Rightarrow a_j = 0 \) \(\forall j \).
\(\iff \) Assume that \(\{T(v_1), \ldots, T(v_n)\} \) is a basis of \(W \)

We want to show that \(T \) is an isomorphism.

1. We want to show that \((a) T \) is injective \((b) T \) is surjective.

(a) If \(T(u) = 0 \) we want to show \(u = 0 \)

Write \(u = \sum_{j=1}^{n} c_j v_j \) so \(T(u) = \sum_{j=1}^{n} c_j T(v_j) = 0 \)

Then since \(\{T(v_1), \ldots, T(v_n)\} \) is lin. indep. \(c_j = 0 \) for \(j = 1, \ldots, n \)

(b) Given \(w \in W \) we want to find \(u \) s.t. \(T(u) = w \)

Write \(w = \sum_{j=1}^{n} a_j T(v_j) \) & let \(u = \sum_{j=1}^{n} a_j v_j \)

Then \(T(u) = T(\sum_{j=1}^{n} a_j v_j) = \sum_{j=1}^{n} a_j T(v_j) = w \)

Lemma: Suppose \(\mathbf{v} \in \langle v_1, \ldots, v_m \rangle \) & that \(\{w_1, \ldots, w_n\} \) is lin. ind.

Then \(m \geq n \)

Proof

For each \(j = 1, \ldots, n \), \(w_j \in \langle v_1, \ldots, v_m \rangle \) so there are scalars \(a_{ij} \) s.t.

\[w_j = \sum_{i=1}^{m} a_{ij} v_i \]

\[\begin{align*}
A x &= 0 \\
\text{Let } A &= \begin{bmatrix} a_{ij} \end{bmatrix} & \text{consider the homogeneous system}
\end{align*} \]

If \(x \) is a solution then \(\sum_{j=1}^{n} a_{ij} x_j = 0 \)

& so \(0 = \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} x_j \right) v_j = \sum_{j=1}^{n} x_j \left(\sum_{i=1}^{m} a_{ij} v_j \right) = \sum_{j=1}^{n} x_j w_j \)

but \(\{w_1, \ldots, w_m\} \) is lin. ind. so \(x_j = 0 \) for \(j \)

Therefore \(A x = 0 \) has \(x = 0 \) as its only solution so \(m \geq n \)
It follows that if \(\{v_1, \ldots, v_n\} \) & \(\{w_1, \ldots, w_n\} \) are both bases of \(V \), then \(n = m \).

We call this number the dimension of \(V \) & we say that \(V \) is \(n \)-dimensional.

(If \(V = \emptyset \), we say that \(\dim V = 0 \)).

If \(V \) is not finite dimensional, we say that it is infinite dimensional.