Office hour today 2-3 pm
Last Time: Linear Independence
This Time: Basis

Def: A vector space V is finite-dimensional if there is a finite list of vectors $\{v_1, \ldots, v_n\}$ in V that span V, $V = \langle v_1, \ldots, v_n \rangle$

Of course we prefer not to include redundant vectors:

Def: A list $\{v_1, \ldots, v_n\}$ is a basis of V if it is linearly independent & $V = \langle v_1, \ldots, v_n \rangle$

Example: The canonical basis $\{e_1, \ldots, e_n\} \subseteq \mathbb{F}^n$ is a basis of \mathbb{F}^n.

The space $\mathcal{P}_n(\mathbb{R})$ of polynomials of degree $\leq n$ with real coefficients has as basis $\{1, x, x^2, \ldots, x^n\}$

The kernel of a matrix $A \in \text{Mat}_{m \times n}(\mathbb{F})$ is finite dimensional & it is easy to find a basis: just solve $Ax = 0$.

Eg. $A = \begin{bmatrix} 2 & -1 & 3 & -5 \\ 2 & 0 & 2 & -4 \\ 1 & 1 & 0 & -1 \end{bmatrix}$, REF of $[A | 0]$ is $\begin{bmatrix} 1 & 0 & 1 & -2 & | 0 \\ 0 & 1 & -1 & 1 & | 0 \\ 0 & 0 & 0 & 0 & | 0 \end{bmatrix}$

So every vector in $\text{Ker} A$ is of the form $\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$, which is the same as saying $\text{Ker} A = \langle \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \rangle$

& since these vectors are linearly independent (look at last two entries) they form a basis.
Given a list \(\{v_1, \ldots, v_n\} \) of vectors in \(\mathbb{F}^m \), we've seen that:
1. \(\{v_1, \ldots, v_n\} \) is lin indep \(\iff \) \(\text{RREF of } A = \begin{pmatrix} 1 & \ldots & 1 \\ v_1 & \ldots & v_n \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \end{pmatrix} \) has a pivot \((n \times m) \) in every col.
2. \(\{v_1, \ldots, v_n\} \) spans \(\mathbb{F}^m \) \(\iff \) \(\text{RREF of } A = \begin{pmatrix} 1 & \ldots & 1 \\ v_1 & \ldots & v_n \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \end{pmatrix} \) has a pivot \((n \times m) \) in every row.

Hence
\(\{v_1, \ldots, v_n\} \) is a basis of \(\mathbb{F}^m \) \(\iff \) \(\text{RREF of } A = \begin{pmatrix} 1 & \ldots & 1 \\ v_1 & \ldots & v_n \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \vdots \\ \end{pmatrix} \) \(\iff \) \(\text{Im} \).

Theorem: A list of vectors \(\{v_1, \ldots, v_n\} \) is \(\text{a basis of } V \) if and only if every vector we \(\in V \) can be written in a unique way as a linear combination of \(\{v_1, \ldots, v_n\} \).

Proof

\(\Rightarrow \) Suppose \(\{v_1, \ldots, v_n\} \) is a basis of \(V \) and \(\alpha \in V \).

We need to show that \(\alpha \) can be written in a unique way as a linear combination of \(\{v_1, \ldots, v_n\} \).

We know \(\{v_1, \ldots, v_n\} \) spans \(V \), so we can find \(a_1, \ldots, a_n \in \mathbb{F} \) s.t.
\[\alpha = \sum_{j=1}^{n} a_j v_j \]

If we also have \(\alpha = \sum_{j=1}^{n} a'_j v_j \), then substituting we find \(0 = \alpha - \alpha = \sum_{j=1}^{n} (a_j - a'_j)v_j \);

so linear independence \(\Rightarrow \) \(a_j - a'_j = 0 \) \(\forall j \) \(\Rightarrow \) \(a_j = a'_j \) \(\forall j \).

\(\Leftarrow \) If every vector \(\alpha \in V \) can be written in a unique way as a linear combination of \(\{v_1, \ldots, v_n\} \),
then clearly \(\text{span} \{v_1, \ldots, v_n\} = V \).

Moreover, if we have \(0 = \sum_{j=1}^{n} a_j v_j \), then since we also have \(0 = \sum_{j=1}^{n} 0 \cdot v_j \), uniqueness \(\Rightarrow \) \(a_j = 0 \) \(\forall j \).

So \(\{v_1, \ldots, v_n\} \) is linearly indep.
Suppose V is a nonzero vector space. If we can find a list $\{v_1, \ldots, v_n\}$ that spans V, then we can find a sublist $S_B \subseteq \{v_1, \ldots, v_n\}$ that forms a basis of V. We’ll do this in n steps:

Step 1: If $v_1 \neq 0$ then add it to S_B.

So if $S_B \neq \emptyset$ then $\langle v_1 \rangle \subseteq \langle S_B \rangle$.

Step 2: If $v_2 \notin \langle v_1 \rangle$ then add it to S_B.

Note if $S_B \neq \emptyset$ then $\langle v_1, v_2 \rangle \subseteq \langle S_B \rangle$.

Step j: If $v_j \notin \langle v_1, \ldots, v_{j-1} \rangle$ then add it to S_B.

Note if $S_B \neq \emptyset$ then $\langle v_1, \ldots, v_j \rangle \subseteq \langle S_B \rangle$.

After the nth step we’ve constructed S_B s.t. $\langle v_1, \ldots, v_n \rangle = \langle S_B \rangle$ but also s.t. S_B is linearly independent by the linear dependence lemma, hence S_B is a basis.

Notice that hence every finite-dimensional space has a basis.

If our vector space is \mathbb{F}^m there is a better algorithm than the n steps above.

If $\{v_1, \ldots, v_n\} \subseteq \mathbb{F}^m$ we can find a basis of $\langle v_1, \ldots, v_n \rangle$, S_B, by putting the matrix $A = \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right)$ in $RREF$ and then including $v_j \in S_B$ if and only if the jth column has a pivot.
Indeed, if $A = \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$ is already in RREF then our n-step algorithm would pick out the columns that have pivots because if v_j does not have a pivot then $v_j = \sum_{k=1}^{j-1} c_k v_k$.

This relation is equivalent to knowing that $\begin{bmatrix} v_1 & \cdots & v_{j-1} & v_j \end{bmatrix}$ is a solution to the system $\begin{bmatrix} c_1 & \cdots & c_{j-1} \end{bmatrix}$.

As this is unchanged by row operations the two algorithms pick the same subset of $\{v_1, \ldots, v_n\}$.

Feb 27, 2019