Last Time: \(\mathcal{L}(V,W) \) is a vector space & other properties of linear transformations

This Time: Matrix multiplication

If \(S \in \mathcal{L}(F^n, F^m) \), \(T \in \mathcal{L}(F^p, F^n) \) then \(SoT \in \mathcal{L}(F^p, F^m) \)

On the other hand, every linear map between these spaces is multiplication by some matrix.

If \(A \) is the matrix associated to \(S \)

\(B \) is the matrix associated to \(T \)

then we define the matrix associated to \(SoT \)

to be the product of \(A \) with \(B \)

& we denote it \(AB \)

That is, \(AB \) is the matrix s.t. \((AB)v = A(Bv) \) \(\forall v \in F^p \)

Note that \(A \in M_{mn}, B \in M_{np} \) & \(AB \in M_{mp} \)

There are many ways of thinking about \(AB \)

i) The \(j^{th} \) column of \(AB \) is \((AB)e_j = A(\overline{\text{column } j \text{ of } B}) \)

So if we write \(B = \begin{pmatrix} b_1 & b_2 & \cdots & b_r \\ b_1' & b_2' & \cdots & b_r' \\ \vdots & \vdots & \ddots & \vdots \\ b_1^{(r)} & b_2^{(r)} & \cdots & b_r^{(r)} \end{pmatrix} \)

then we have \(AB = \begin{pmatrix} A b_1 & A b_2 & \cdots & A b_r \\ A b_1' & A b_2' & \cdots & A b_r' \\ \vdots & \vdots & \ddots & \vdots \\ A b_1^{(r)} & A b_2^{(r)} & \cdots & A b_r^{(r)} \end{pmatrix} \)

In particular, every column of \(AB \) is a linear combination of the columns of \(A \).
ii) This expression gives us a formula for the entries of AB

$$[AB]_{ij} = \left(A(b_j)\right)_i = \sum_{k=1}^{n} a_{ik} b_{kj}$$

A row vector is a matrix of size $1 \times m$ for some $m \in \mathbb{N}$ (but like a column vector of size $n \times 1$ is a matrix of size $n \times 1$).

If $v \in M_{1,m}(F) \& w \in M_{m,1}(F)$

then vw makes sense when $n=m$

& then is a matrix of size 1×1, which is just a #

$$vw = [v_1 \cdots v_m][w_1 \cdots w_n] = \sum_{k=1}^{n} v_k w_k$$

Comparing we see that $[AB]_{ij} = \text{matrix product of}$

the i^{th} row of A \& j^{th} column of B.

Thus if $A = \begin{bmatrix} -a_1 & - & - \\ - & \ddots & - \\ - & - & -a_m \end{bmatrix}$, $B = \begin{bmatrix} b_1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & b_p \end{bmatrix}$ then $AB = \begin{bmatrix} a_1 b_1 \cdots a_1 b_p \\ \vdots & \ddots & \vdots \\ a_m b_1 \cdots a_m b_p \end{bmatrix}$

iii) Finally, this can be interpreted as $AB = \begin{bmatrix} -a_1 b \cdots -a_1 b \\ \vdots & \ddots & \vdots \\ -a_m b \cdots -a_m b \end{bmatrix}$

That is, the j^{th} row of AB

is the product of the j^{th} row of A \& B.
Example: \[A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 & 0 \\ 1 & -2 & 4 \end{bmatrix} \]

\[AB = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -2 & 12 \end{bmatrix} \] note that \(BA \) is not defined

Example: \[A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 2 & 0 \end{bmatrix}, \quad AB = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix}, \quad BA = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \]

If \(A \in M_{m \times n}(\mathbb{F}) \), \(A = [a_{ij}]_{1 \leq i \leq m}^{1 \leq j \leq n} \)

the transpose of \(A \), \(A^T \in M_{n \times m}(\mathbb{F}) \),

has entries \([A^T]_{ij} = a_{ji} \)

So \(A = \begin{bmatrix} -a_{11} & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} & \cdots & -a_{mn} \end{bmatrix} \) then \(A^T = \begin{bmatrix} 1 & \cdots & 1 \\ a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \)

Note: \((A^T)^T = A \) & \((AB)^T = B^T A^T \)

If \(\mathbb{F} = \mathbb{C} \), \(B^* \) is the matrix obtained from \(B \)

by transposing & then taking complex conjugates

\[B^* = \text{conjugate transpose of } B \]
Def \(A \in M_n(\mathbb{F}) \). We say that \(B \in M_n(\mathbb{F}) \) is an inverse of \(A \) if \(AB = BA = I_n \).

If \(A \) has an inverse, we say that \(A \) is invertible.

If \(B \) is an inverse of \(A \), then it is unique since multiplying by \(B \) yields \(x = Bb \).

If a matrix \(A \in M_n(\mathbb{F}) \) has an inverse, then it is unique.

Indeed, if \(B, C \) are both inverses of \(A \), then
\[B = B(AC) = (BA)C = C. \]

If \(A, B \in M_n(\mathbb{F}) \) are both invertible, then \((AB)^{-1} = B^{-1}A^{-1} \).

Also, note that \((A^{-1})^{-1} = A \).

Example: Suppose \(a, b, c, d \in \mathbb{F} \) and \(ad \neq bc \),
then \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \) is invertible and \(\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \) is its inverse.

Example: \(A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) is not invertible (over any field).

Indeed, \(A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0 \), so if \(A \) were invertible, then \(A^2 \) would be too.