Last time: Gaussian elimination: using row operations we can put any matrix into Reduced Row Echelon Form.

This time: A geometric interpretation of a linear system.

An n-dimensional vector over \mathbb{R} is a column \(\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \) with \(\forall i \in \mathbb{R} \).

The set of n-dimensional vectors over \mathbb{R} is denoted \mathbb{R}^n.

We have two algebraic operations on \mathbb{R}^n:

1) Scalar multiplication:

 if $c \in \mathbb{R}$ and $v \in \mathbb{R}^n$, then $cv \in \mathbb{R}^n$ is the vector
 \[cv = c \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} cv_1 \\ \vdots \\ cv_n \end{bmatrix}. \]

2) Addition:

 if $v, w \in \mathbb{R}^n$, then $v + w \in \mathbb{R}^n$ is the vector
 \[v + w = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} + \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} v_1 + w_1 \\ \vdots \\ v_n + w_n \end{bmatrix}. \]

A linear combination of $v_1, \ldots, v_k \in \mathbb{R}^n$ is a vector of the form \(\sum_{i=1}^{k} c_i v_i = c_1 v_1 + \cdots + c_k v_k \) where $c_i \in \mathbb{R}$.

The span of v_1, \ldots, v_k is the set $\langle v_1, \ldots, v_k \rangle$ of all linear combinations of v_1, \ldots, v_k: $\langle v_1, \ldots, v_k \rangle = \left\{ \sum_{i=1}^{k} c_i v_i : c_i \in \mathbb{R} \right\}$.
E.g., Is \(\mathbf{w} = \begin{bmatrix} 39 \\ 34 \\ 26 \end{bmatrix} \) a linear combination of \(\mathbf{v}_1 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \)?

\(\iff \) Can we find \(c_1, c_2, c_3 \in \mathbb{R} \) s.t. \(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3 = \mathbf{w} \)?

\(\iff \) Can we solve \(3c_1 + 2c_2 + c_3 = 39 \) ? Yes, this is \(2c_1 + 3c_2 + c_3 = 34 \) from the Chinese ex.

\(\iff \) Can we solve \(c_1 + 2c_2 + 3c_3 = 26 \) from last class

E.g., Any \(\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \) can be written \(\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \cdots + x_n \mathbf{e}_n \)

We call \((\mathbf{e}_1, \ldots, \mathbf{e}_n) \) the standard basis of \(\mathbb{R}^n \)

E.g., \(\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \)

A vector \(\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \) is in \(\text{span} \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \iff w_3 = 0 \)

Indeed, \(\iff \) is clear & to see that \(\iff \) is true, note that we can write \(\mathbf{w} = w_1 \mathbf{v}_1 + (w_1 - w_2) \mathbf{v}_2 = w_1 \mathbf{v}_1 + (w_1 - w_2) \mathbf{v}_1 \)

Alternately, we can write \(\mathbf{w} = w_2 \mathbf{v}_2 + (w_1 - 2w_2) \mathbf{v}_2 = w_2 \mathbf{v}_2 + (w_1 - 2w_1) \mathbf{v}_2 \)

So \(\mathbf{w} \) is a linear combination of \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) in more than one way.
We have an equivalence of problems:
Solve a linear system of equations
\(\Leftrightarrow \) Write a vector as a linear combination of given vectors

Geometrically, \(v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \rightarrow \begin{array}{c} x \\ y \end{array}, \quad w = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \rightarrow \begin{array}{c} x \\ y \end{array} \)

The two operations above have geometric interpretations:

- \(cv \) has length \(\|cv\| = |c|\|v\| \)
- A point is in the same direction as \(v \) if \(c > 0 \)
- opposite \(c < 0 \)
- \(v + w \) is the vector obtained by moving one of the vectors from the origin to the tip of the other

The span of a non-zero vector \(v \), \(\langle v \rangle = \{cv : c \in \mathbb{R}\} \), is the line through the origin in the direction of \(v \)

If \(w \) is a fixed vector then \(\{w + cv : c \in \mathbb{R}\} = w + \langle v \rangle \) is a line parallel to \(\langle v \rangle \) passing through the end of \(w \)
E.g., last time we saw that \(x + \frac{1}{2} y = 10 \) has solutions \(x = 10 + \frac{1}{2} w \) and \(y = 10 - \frac{3}{2} w \).

As vectors, the solutions are:

\[
\begin{bmatrix}
 x \\
 y \\
 z \\
 w
\end{bmatrix} = \begin{bmatrix}
 10 + \frac{1}{2} w \\
 10 - \frac{3}{2} w \\
 0 \\
 w
\end{bmatrix} + w \begin{bmatrix}
 \frac{1}{2} \\
 -\frac{3}{2} \\
 0 \\
 1
\end{bmatrix}
\]

Geometrically, this is a line in \(\mathbb{R}^4 \):

It is the line through \(\begin{bmatrix}
 10 \\
 10 \\
 0 \\
 0
\end{bmatrix} \) in the direction \(\begin{bmatrix}
 \frac{1}{2} \\
 -\frac{3}{2} \\
 0 \\
 1
\end{bmatrix} \).

E.g., the system \(x_1 + 2x_2 + 5x_4 = -3 \) has solutions:

\[
\begin{align*}
-x_1 - 2x_2 + x_3 - 6x_4 + x_5 &= 2 \\
-2x_1 + 4x_2 - 10x_4 + x_5 &= 8
\end{align*}
\]

\[
x_1 = 3 - 2x_2 - 5x_4 \\
x_3 = 1 + x_4 \\
x_5 = -2
\]

\(x_2, x_4 \in \mathbb{R} \)

This is a translate of the plane \(\langle \begin{bmatrix}
 1 \\
 0 \\
 0
\end{bmatrix}, \begin{bmatrix}
 -5 \\
 0 \\
 1
\end{bmatrix} \rangle \) in \(\mathbb{R}^3 \).

We can visualize this in \(\mathbb{R}^3 \):

If \(v_1, v_2, w \in \mathbb{R}^3 \) are non-zero vectors not all on the same plane, then...