Linear Algebra Fields Lecture 4

LAST TIME: The geometry of linear systems
THIS TIME: Systems of different coefficients

So far we've been studying linear systems of equations over the real numbers: the coefficients & the solutions have been real numbers.

Actually, the examples we've been working with haven't used any numbers like \(\pi \) or \(\sqrt{2} \). We've been working with integers & fractions

\[\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} \]

The coefficients have been \(\mathbb{Q} \)-numbers & the solutions have been \(\mathbb{Q} \)-numbers. This is bound to happen since the way we solve equations using row operations (adding a multiple of one eq. to another, multiplying an eq. by a non-zero scalar, switching the order of equations) doesn't leave the realm of fractions (\(\mathbb{Q} \)-numbers) as long as the scalars we use are rational numbers.
Alternately, it could be useful to consider equations in which the coefficients are \(\mathbb{C} \)-numbers.

Or, especially when thinking about computer science, to consider equations in “binary” where the coefficients & solutions can only be 0 or 1.

Most generally, we can consider equations over a field \(\mathbb{F} \).

A field is a set with two operations \(+\) and \(\cdot\)

and two distinguished elements 0 & 1 s.t.

\(\mathbb{F} \) is closed under \(+\) & \(\cdot\):
\[a, b \in \mathbb{F} \implies a + b \in \mathbb{F}, \ a \cdot b \in \mathbb{F} \]

\(+\) & \(\cdot\) are associative:
\[a, b, c \in \mathbb{F} \implies (a + b) + c = a + (b + c) \]
\[(a \cdot b) \cdot c = a \cdot (b \cdot c) \]

\(+\) & \(\cdot\) are commutative:
\[a, b \in \mathbb{F} \implies a + b = b + a, \ ab = ba \]

\(+\) & \(\cdot\) have identities (neutral elements):
\[a \in \mathbb{F} \implies a + 0 = 0 + a = a \ & \ a \cdot 1 = 1 \cdot a = a \]

\(+\) & \(\cdot\) have inverses:
\[\forall a \in \mathbb{F} \text{ there is an additive inverse } \]
\[-a \in \mathbb{F} \text{ s.t. } a + (-a) = (-a) + a = 0 \]

\(\forall a \in \mathbb{F} \setminus \{0\} \text{ there is a multiplicative inverse } \]
\[a^{-1} \in \mathbb{F} \text{ s.t. } a \cdot (a^{-1}) = (a^{-1}) \cdot a = 1 \]

\(+\) & \(\cdot\) distribute:
\[\forall a, b, c \in \mathbb{F}, \ a \cdot (b + c) = a \cdot b + a \cdot c \]

So a field is a bunch of things you can add, multiply, subtract & divide.
E.g., \(\mathbb{F} = \mathbb{C} = \{a + ib : a, b \in \mathbb{R}\} \) just like \(\mathbb{R} \)-numbers, but \(i^2 = -1 \)

- \((a + ib) = -a - ib \) \(\& \) if \(a + ib \neq 0 \) (i.e., \(a \neq 0 \) or \(b \neq 0 \) or both)

 then \((a + ib)^{-1} = \frac{a - ib}{a^2 + b^2}\)

E.g., \(\mathbb{F} = \mathbb{Q} = \{\frac{r}{s} : r, s \in \mathbb{Z}, s \neq 0\} \) \(\& \) the same operations as \(\mathbb{R} \)

E.g., \(\mathbb{F} = \mathbb{F}_2 = \{0, 1\} \) field \(\& \) two elements

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

1) Every element is its own additive inverse
2) The only non-zero element, 1, is its own multiplicative inverse.

(Similarly, for any prime \(p \), there is a field \(\mathbb{F}_p = \{0, 1, \ldots, p-1\} \).

What are its operations?

Many 'obvious' facts about arithmetic work in general fields.

See Thm 1.5 in the book; the proofs are fun!

For example: there is only one additive identity (i.e., zero)

Since, if \(0, 0 \) are both additive identities

then \(0, 0 = 0 + 0 = 0 \)

because \(0 \) is neutral

because \(0 \) is neutral

Another example: if \(a \cdot b = 0 \) in a field \(\mathbb{F} \) then \(a = 0 \) or \(b = 0 \) (or both)

Indeed, if \(a \neq 0 \) then it has a multiplicative inverse \(a^{-1} \)

\(\& \) hence \(a^{-1} (a \cdot b) = a^{-1} \cdot 0 = 0 \)

but \(a^{-1} (a \cdot b) = (a^{-1} a) b = 1 \cdot b = b \), so \(a \neq 0 \implies b = 0 \).
A linear system over \mathbb{F} of m equations in n variables is a set of equations of the form
\[
\begin{align*}
 a_{11}x_1 + \cdots + a_{1n}x_n &= b_1, \\
 &\vdots \\
 a_{m1}x_1 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]
where $a_{ij} \in \mathbb{F}$, $1 \leq i \leq m$, $1 \leq j \leq n$.

We solve this as before by forming the augmented matrix A using row operations (which make sense in any field) to put the matrix into RREF.

E.g., Find the RREF of
\[
\begin{bmatrix}
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0
\end{bmatrix}
\]
over \mathbb{R} or over \mathbb{F}_2.

1) Over \mathbb{R}: change order
\[
\begin{bmatrix}
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0
\end{bmatrix}
\]
add multiple of R_1 to R_3
\[
\begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0 & 1 \\
 0 & 1 & 0
\end{bmatrix}
\]
multiply R_3 by $\frac{1}{2}$
\[
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 1 & 0
\end{bmatrix}
\]
add multiple of R_3 to R_2.

2) Over \mathbb{F}_2:
change order
\[
\begin{bmatrix}
 1 & 0 & 1 \\
 0 & 1 & 0 \\
 1 & 0 & 1
\end{bmatrix}
\]
add multiple of R_1 to R_3
\[
\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
\]
add multiple of R_2 to R_1.

What does this example say about systems of equations?
The system \(\begin{cases} y = 1 \\ x = 1 \\ x+y = 0 \end{cases} \) does not have solutions over \(\mathbb{R} \)
and \(x+y = 0 \) does have a solution over \(\mathbb{F}_2 \).

Note that, since \(\mathbb{F}_2 \) is finite,
every (finite) system of equations has at most
a finite number of solutions.
On the other hand, since \(\mathbb{R} \) is infinite,
there can be infinitely many solutions to a finite system
of equations.